
Book Title
Book Editors
IOS Press, 2003

1

A BDD-like Implementation of an Automata
Package

1

Jean-Michel Couvreur

LaBRI, Université Bordeaux 1, Talence, France
e-mail: couvreur@labri.fr

Abstract. In this paper we propose a new data structure, called shared automata, for
representing deterministic finite automata (DFA). Shared automata admit a strong
canonical form for DFA similarly to Binary Decision Diagrams (BDDs). As a re-
sult, checking whether two DFAs are equal is a constant-time comparison. A hash-
based cache can be used to improve significantly the performance of automata op-
erations. The key points of this structure are the decomposition of the DFA into its
strongly connected components and an incremental algorithm based on this decom-
position for transforming any DFA into a shared automaton. We experimentally
compare PresTaf, a direct implementation of the Presburger arithmetic built on a
shared automata package, and the Presburger package LASH based on standard au-
tomata algorithms. Experimental results show the great benefit of the new canonical
data structure applied to symbolic state space exploration of infinite systems.

Keywords.shared automaton, Presburger arithmetic, symbolic verification, infinite
system, Petri net

1. Introduction

Finite Automata are basic structures that appear in many areas of Computer Science and other
disciplines. The emergence of new tools based on automata for the manipulation of infinite
structures [6,10,1,3] makes improving the efficiency of automata packages a crucial challenge.
The present work is motivated by model-checking problems. where most of the algorithms are
based on fixed point computations that share many identical sub-computations. A promising
track is the realisation of a BDD-like package because BDDs have proved these capability to
take advantage of this aspect when using cache technique. Since Bryant’s original publication
of BDD algorithms [4], there has been a great deal of research in the area. One of the most
powerful applications of BDDs has been symbolic model checking, used to formally verify
digital circuits and other finite state systems [5]. A BDD package is based on an efficient
implementation of the if-then-else (ITE) operator. It uses essentially two principles: a hash
table, called unique table, maintains a strong canonical form in BDDs and stores a forest of
BDDs sharing common substructures, a hash table, called computed cache, keeps sub-results
when evaluating a recursive ITE operation.

1A prior version of this work was published in CIAA 2004 as a poster paper of 2 pages. Because a 2 page abstract is
sort of a no-op and wish to give access to this work, I hope that this paper will be considered as a normal submission.

2 Jean-Michel Couvreur / A BDD-like Implementation of an Automata Package

Applying the BDD principle to automata is not that easy. Thus a solution to our problem
has to design new principles to overcome the following difficulties: define a strong canonical
form for automata, handle a forest of automata sharing common substructures, design a con-
stant time procedure to check automata equality and an efficient hash function. Notice that
classic notion of minimal automata are far from solving these problems. One needs to design
a new structure, well-adapted to substructures sharing and a new algorithm transforming an
automaton into this new structure, guaranteeing a strong canonical form.

In this paper we propose a data structure, called shared automata, for representing deter-
ministic finite automata. Informally, a shared automaton codes a strongly connected compo-
nent of an automaton and its exit states. Thus, an automaton can be considered as an acyclic
graph of shared automata. This representation is well-adapted to substructure sharing between
automata. We have designed an incremental algorithm based on this decomposition producing
shared automata where states respect some canonical order. During the canonisation of an au-
tomaton, produced shared automata are stored in a unique table, guaranteeing a strong canon-
ical form like for BDDs. During this evaluation, sub-results are stored in a computed cache,
avoiding unnecessary re-evaluation of sub-expressions. In our system, automata operations, as
set operations, are obtained on-the-fly : applying the canonical algorithm on a computed non
canonical representation of the result. We experimentally compare PresTaf, a direct implemen-
tation of the Presburger arithmetic built on the shared automata package, and the Presburger
package LASH [10] based on standard automata algorithms. The goal of this experimentation
is to evaluate the benefits that shared automata techniques can bring to systems using standard
automata algorithms. Comparison with other kind of Presburger package is out of the scope
of our experimentation. We chose a classic problem verification: the backward symbolic state
space exploration for Petri nets. Experimental results show the great benefit of the new canoni-
cal structure applied to this kind of problems. As BDD [11], the main factor of this benefit is the
computed cache. Indeed, the iterations of a state space exploration share many sub-problems.

The rest of the paper is organised as follows. We first presentexit automata, an extension
of automata used to represent SCCs of automata. Then, we give a formal definition ofshared
automataand state some sufficient conditions for the canonicity of a forest of shared automata.
The next section is dedicated to the implementation and focuses on the algorithm to transform
automata into shared automata. Finally, we give some experimental results.

2. Deterministic Finite Exit Automata

Definition 1 A deterministic finite exit automaton(DFEA) over the finite alphabetΣ is a struc-
tureO = 〈Q,E,Σ, δ, F 〉 whereQ and E are finite disjoint sets of states,F ⊆ Q, and the
transition function is given byδ : Q × Σ → Q ∪ E. States ofQ are calledlocal states, and
states ofE are calledexit states. A DFEA with an initial state inQ, 〈O, q〉, denotedOq, is
called amarked DFEA.

WhenE is empty, the automaton is just a deterministic finite automaton (DFA). The tran-
sition functionδ extends in a partial function on words:

δ∗ : (Q ∪ E)× Σ∗ → Q ∪ E
δ∗(p, ε) = p

δ∗(p, xa) =
{

δ(δ∗(p, x), a) if δ∗(p, x) ∈ Q
undefined otherwise

Jean-Michel Couvreur / A BDD-like Implementation of an Automata Package 3

q3

q2

0

q1
0

q0

1

1
0,1

e01 0

q1

q2

0

q4
0

q0

1

1
0

e0

1 0

q3

1

e1

1 0

EA2EA1

q1

q2

0

q4
0

q0

1

1
0,1

e01 0

q3

0,1

EA3

Figure 1. Examples of exit automata

wherex is a word, anda ∈ Σ. Thus a marked DFEAlocally acceptsinputx on local stateq if
δ∗(q, x) ∈ F ; we denote the set of locally accepted wordsL(Oq). Note that when the exit state
setE is empty, a DFEA is a DFA and locally-accepted words are accepted words. For any exit
stateu, we say thatx is aprefix wordof u from q if δ∗(q, x) = u; the set of prefix words ofu
is denotedL[u](Oq).

Nerode equivalence is extended to (local and exit) states of DFEA; two states are equiv-
alent if they locally accept the same language and have the same prefix language for any exit
state:p ∼ q ⇔ (L(Op) = L(Oq) ∧ ∀u ∈ E : L[u](Op) = L[u](Oq)). Nerode equiv-
alence remains compatible with respect to the transition function. Thus the quotient DFEA
can be defined asO/∼ = 〈Q/∼, E, Σ, δ/∼, F/∼〉 with δ/∼(p/∼, a) = δ(p, a)/∼. Note that
L(O/∼q/∼

) = L(Oq), andL[u](O/∼q/∼
) = L[u](Oq) for any local stateq. A DFEA is said

to be minimal if no two distinct local states are equivalent. Minimizing a DFEA still con-
sists in computing the quotient automatonO/∼. The notion of DFEA extends the definition of
DFA, but does not immediately provide an interesting structure in our study. We will consider
strongly connected DFEA.

Definition 2 A DFEAO = 〈Q, E,Σ, δ, F 〉 is a strongly connected DFEA(SC-DFEA) if any
local state is reachable from any local state:∀p, q ∈ Q,∃x ∈ Σ∗ : δ∗(p, x) = q.

Example 1 Figure 1 gives three examples of exit automata. WhileEA1 andEA2 are minimal,
minimizingEA3 leads toEA1 (i.e. q3 ∼ q4). Notice that when minimizing a SC-DFEA, the
quotient automaton remains a SC-DFEA.

3. Shared Automata

Shared automata represent the strongly connected components of an automaton in term of
SC-DFEAs and the connections by functions mapping exit states to states of the automaton.
Consider a finite alphabetΣ for all automata, shared automata and marked shared automata
are inductively defined as follow :

Definition 3 Shared Automataandmarked shared automataare both inductively defined by:

• if O is an SC-DFEA with no exit state thenO is a shared automaton,
• if O is an SC-DFEA with no exit state andq a local state ofO thenOq is a marked

shared automaton,

4 Jean-Michel Couvreur / A BDD-like Implementation of an Automata Package

q1

q2

0

q4
0

q0

1

1

0

1 0q3

1

1 0

q3

q2

0

q1
0

q0

1

1

0,1

1 0

q0 0,1

S3

S1

Zero

q1

q2

0

q4
0

q0

1

1

0

1 0q3

1

1 0

q3

q2

0

q1
0

q0

1

1

0,1

1 0

q0 0,1

S2

S1

Zero

Figure 2. Decomposition of two automata into shared automata

• if O is an SC-DFEA, andλ a mapping associating to any exit state ofO, a marked
shared automaton, thenO(λ) is a shared automaton,

• if O(λ) is a shared automaton, andq is a local state ofO, thenOq(λ) is a marked
shared automaton.

Functionsλ are calledbind functions. Note that a marked shared automaton can be also
defined as a marked SC-DFEA associated with a bind function. When a SC-DFEAO has no
exit, we use the conventionO(∅) for representing the shared automatonO. Thus any shared
automaton has the formO(λ). We naturally extend the convention for marked shared automata
with no exit: a marked shared automatonOq is denoted byOq(∅). A marked shared automa-
tonOq(λ) can be writtenSq whereS = O(λ). Sometimes, marked shared automata will be
considered as shared automata: for instance, we may say ”the shared automatonλ(u)”.

Let gives some basic notions and a formal definition of the DFA representing a shared
automaton.

Definition 4 Thecomponent setof a shared automatonS = O(λ), written SCC(S), is a set of
shared automata such that

SCC(S) = {S} ∪
⋃

u∈E

SCC(λ(u)),

whereE is the exit set ofO, andλ(u) are considered as shared automata.

Definition 5 Thedepthof a shared automatonS = O(λ), written DEPTH(S), is defined as:

DEPTH(S) =
{

0 if λ = ∅
1 + maxu∈E DEPTH(λ(u)) otherwise

Definition 6 TheDFA represented by a shared automatonS, denoted DFA(S), is defined by :

• States are marked shared automataOq(λ) whereO(λ) is a shared automaton of
SCC(S) andq is a local state ofO,

Jean-Michel Couvreur / A BDD-like Implementation of an Automata Package 5

• StateOq(λ) is final if q is final inO,
• Transition functionδ is given by :

δ(Oq(λ), a) =
{
Oδ(q,a)(λ) if δ(q, a) is a local state
λ(δ(q, a)) otherwise

Proposition 1 Any DFA is isomorphic to the DFA of a shared automaton.

Proof.For each SCC of a DFA, one can build an exit automaton : local states are states of the
SCC, exit states are states connected to SCC states not in the SCC and the transition function
is the restriction to the SCC of transition function of DFA. Then for each SCC, we consider the
shared automaton composed with its exit automaton and a bind function connecting each exit
state to its corresponding state as a local state of a shared automaton associated to its SCC.2

Example 2 Figure 2 gives actually the representation of four shared automata:Zero, S1, S2,
S3. Zero is an exit automaton with no exit state, then a shared automaton. The others are
defined from the exit automataO1 andO2 (see Figure 1):

• S1 = O1(λ1) with λ1(e0) = Zeroq0,
• S2 = O2(λ2) with λ2(e0) = S1q1, λ2(e1) = S1q3,
• S3 = O2(λ3) with λ3(e0) = Zeroq0, λ3(e1) = S1q3.

Note that SCC(Zero) = {Zero}, DEPTH(Zero) = 0, SCC(S1) = {Zero,S1}, DEPTH(S1) =
1, etc.

The canonicity problem of shared automata representation requires a preliminary study
about local characterisation of minimal automata. First, we give the definition of a minimal
shared automaton. Second, we state necessary conditions for the minimality property. Then we
give sufficient conditions which lead to a strong canonical representation of shared automata.

Definition 7 A shared automaton is said to beminimal if its DFA is minimal.

Proposition 2 LetS be a shared automaton. LetO(λ) be a component ofS. If S is minimal,
thenO is minimal.

Proof.This property is based on the fact that for every local statep of S :

L(Sp) = L(Op) ∪
⋃

u∈E

L[u](Op) · L(λ(u))

whereE is the exit state set ofO. Then, ifO is not mininal,S is not minimal. 2

The second condition is based on the notion of shared automaton homomorphisms. In-
formally, an homomorphism is a mapping between states of two shared automata, compatible
with the transition functions.

Definition 8 Let S = O(λ), S ′ = O′(λ′) be two shared automata. DenoteO =
〈Q,E,Σ, δ, F 〉 andO′ = 〈Q′, E′,Σ, δ′, F ′〉. Let h : Q ∪ E → Q′ ∪ E′ be mapping which
fulfils h(Q) ⊆ Q′, h(F) ⊆ F ′ andh(Q \ F) ⊆ Q′ \ F ′. Then h is an homomorphism from
S to S ′ if for any pair (p, a) in Q × Σ whereq = δ(p, a) andq′ = δ′(h(p), a), we have the
following conditions:

6 Jean-Michel Couvreur / A BDD-like Implementation of an Automata Package

• if q ∈ Q, thenq′ ∈ Q′ andh(q) = q′,
• if q ∈ E andq′ ∈ E′, thenλ(q) = λ′(q′),
• if q ∈ E andq′ ∈ Q′, thenλ(q) = S ′q′ .

We say thatO is homomorphic toO′ if there exists an homomorphismh : O → O′.
Moreover, ifh is bijective,O andO′ are said to be isomorphic.

The following proposition states that homomorphism links marked shared automata ac-
cepting the same words.

Proposition 3 LetS = O(λ), S ′ = O′(λ′) be two shared automaton. Leth : S → S ′ be an
homomorphism. Letp a local state ofO. ThenL(Sp) = L(S ′h(p)).

Proof. Let x = a1 · · · an be a word inΣ∗. If for all prefixes xi = a1 · · · ai, δ(p, xi)
are defined and are local states ofO, δ′(h(p), xi) are local states ofO′. From the defini-
tion of an homomorphism, both target statesδ(p, x), δ(h(p), x) are final or not final, and
then x ∈ L(Sp) ⇔ x ∈ L(S ′h(p)). If for a prefix xi, δ(p, xi) is an exit state, then
x ∈ xi · L(λ(δ(p, xi))). From the definition of an homomorphism, ifδ′(h(p), xi) ∈ E′, then
λ(δ(p, xi)) = λ′(δ′(h(p), xi)), otherwiseλ(δ(p, xi)) = S ′δ′(h(p),xi)

. For both cases, we de-
duce thatx ∈ L(Sp) ⇔ x ∈ L(S ′h(p)). 2

Then, we deduce the second necessary condition for the minimality of shared automata.

Corollary 1 Let S be a shared automaton. IfS is minimal, then the shared automata in
SCC(S) are pairwise non homomorphic.

Example 3 Shared automatonS3 in Figure 2 is not minimal, instead its exit automata are
minimal. Indeed,S3 is homomorphic toS1: h(q0) = q0, h(q1) = q3, h(q2) = q2, h(q3) =
h(q4) = q1, h(e0) = q3 and h(e1) = e0. On the other hand, we can prove thatS2 is not
homomorphic toS1 and moreover thatS2 is minimal.

The following proposition gives a finer characterisation of homomorphic shared automata.
It will be used for the canonical representation of shared automata, and also for the optimisation
of our implementation.

Proposition 4 Let S = O(λ), S ′ = O′(λ′) be two shared automata. DenotesE andE′ the
exit state sets ofO andO′, andQ′ the local state set ofO′. If S is homomorphic toS ′, then

λ(E) ⊆ λ(E′) ∪ {S ′q′ |q′ ∈ Q′}

Moreover ifλ(E) ⊆ λ(E′) thenλ(E) = λ(E′), otherwise DEPTH(S) = DEPTH(S ′) + 1
and∀S ′′q ∈ λ(E) : DEPTH(S ′′) = DEPTH(S ′) ⇒ S ′′ = S ′.

Proof.Leth : S → S ′ be an homomorphism. The fact thatλ(E) ⊆ λ(E′)∪{S ′q′ |q′ ∈ Q′} is an
immediat consequence of the definition of an homomorphism. Assume thatλ(E) ⊆ λ(E′). Let
e′ ∈ E′, p ∈ Q andx ∈ Σ∗ such thate′ = δ′(h(p), x)). Thenδ(p, x) ∈ E andh(δ(p, x)) = e′.
Indeed ifδ(p, x) is not defined, then there is a prefixy of x such thath(δ(p, y)) is in Q′. This is
in contradiction withλ(E) ⊆ λ(E′) ; if δ(p, x) is defined,δ(p, x) is also an exit state, because
h(δ(p, x)) is an exit state. Thus, any exit state ofO′ is in h(E). Assume thatλ(E) 6⊆ λ(E′).

Jean-Michel Couvreur / A BDD-like Implementation of an Automata Package 7

Then DEPTH(S) = DEPTH(S ′) + 1 and the only marked shared automata inλ(E) with
depth(S ’) are in{S ′q′ |q′ ∈ Q′}. 2

Enforcing the necessary conditions leads to rules to achieve a strong canonical form of
marked shared automata. The key point is the notion of structurally minimal set of shared
automata.

Definition 9 LetF be a set of shared automata. The setF is structurally minimalif all pairs
of shared automataS = O(λ) andS ′ fulfil the following conditions :

1. The bind functionλ of S is injective or empty.
2. LetE be the exit state set ofO. S is not homomorphic to any shared automata ofλ(E).
3. The exit automatonO is minimal.
4. If S andS ′ are isomorphic thenS = S ′.

Finally, we conclude with the proposition laying down the rules for obtaining a canonical
representation of shared automata.

Proposition 5 LetSq, S ′q′ be two shared automata. If SCC(S) ∪ SCC(S ′) is structurally min-
imal, then the two following properties are equivalent :

1. S = S ′ andp = p′,
2. L(Sp) = L(S ′p′)

Proof. Suppose that there existsSp 6= S ′p′ with L(Sp) = L(S ′p′). Assume thatSp, S ′p′ is
selected such that DEPTH(S) + DEPTH(S ′) is minimal. Let consider the two casesS = S ′
andS 6= S ′. DenoteS = O(λ) andS ′ = O′(λ′).

(1) If S = S ′. Firstly, L(Op) ⊆ L(Op′). Let x ∈ L(Op). If δ(p′, x) is local state, then
δ(p′, x) is final, becausex ∈ L(Sp) = L(S ′p′); if δ(p′, x) is not defined or is an exit state,
there exists a prefixy of x such thatδ(p′, y) is an exit state, and thenSδ(p, y) 6= λ(δ(p′, y)) and
L(Sδ(p, x)) = L(λ(δ(p′, y))). This is in contradiction with the minimality of DEPTH(S) +
DEPTH(S ′). For the same raisonL(Op′) ⊆ L(Op). Secondly,L[u](Op) ⊆ L[u](Op′) for any
exit stateu. Letx ∈ L[u](Op). If δ(p′, x) is a local state thenλ(u) 6= Sδ(p′, x) andL(λ(u)) 6=
L(Sδ(p′, x)). This is in contradiction with the minimality of DEPTH(S) + DEPTH(S ′). If
δ(p′, x) is an exit statev not equal tou; if λ[u] 6= λ[v], then these two marked shared automata
contradict the minimality of DEPTH(S) + DEPTH(S ′), otherwise ifλ[u] = λ[v], λ is not
injective and then SCC(S) ∪ SCC(S ′) is not structurally minimal. Ifδ(p′, x) is not defined,
there exists a prefixy of x such thatδ(p′, y) is an exit state, and thenSδ(p, y), λ(δ(p′, y))
contradict the minimality of DEPTH(S) + DEPTH(S ′). Sincex ∈ L[u](Op′). For the same
raisonL[u](Op′) ⊆ L[u](Op). We have proven that statep andp′ are Nerode equivalent, and
thenO is not minimal. This is in contradiction with the structurally minimality of SCC(S) ∪
SCC(S ′).

(2) If S 6= S ′ with DEPTH(S) ≥ DEPTH(S ′). Let q be a state ofO. Let Lq = {x ∈
Σ∗|q = δ(p, x)}. Firstly, δ′(p′, x) is defined for allx ∈ Lq. If δ(p′, x) is not defined, then
there exist a prefixy of x such thatδ(p′, y) is an exit state.Sδ(p, y) 6= λ(δ(p′, y)) because
DEPTH(S) ≥ DEPTH(S ′) > DEPTH(λ(δ(p′, y))), and thenSδ(p, y), λ(δ(p′, y)) contradict
the minimality of DEPTH(S) + DEPTH(S ′). Secondly, ifq is local thenδ′(p′, x) is local
for all x ∈ Lq. If δ′(p′, x) is an exit state, for depth argumentSδ(p, x) 6= λ(δ(p′, x)), and
thenSδ(p, x), λ(δ(p′, x)) contradict the minimality of DEPTH(S) + DEPTH(S ′). Thirdly,

8 Jean-Michel Couvreur / A BDD-like Implementation of an Automata Package

if δ(p, x) = δ(p, y) for all x, y ∈ Lq. If there exists two wordx, y ∈ Lq such that
δ(p, x) 6= δ(p, y), thenS ′δ(p,x) andS ′δ(p,x) accept the same language and have minimal depth
sum. From the case (1), we conclude with a contradiction. Now, we are in position to define the
homomorphismh : S → S ′ with h(q) = δ(p′, x) wherex is any word inLq. LetE andE′ the
exit state set ofO andO′. If λ(E) 6⊆ λ′(E′), then from Proposition 4,S ′ is an image ofλ and
then SCC(S)∪SCC(S ′) is not structurally minimal. Ifλ(E) ⊆ λ′(E′), then from Proposition
4, λ(E) = λ(E′) and then DEPTH(S) = DEPTH(S ′). Let prove thath is surjective. Letq′

a state ofO′, let x ∈ Σ∗ such thatq′ = δ′(p′, x). δ(p, x) is defined, otherwise there exists a
prefixy of x such thatδ(p, y) is an exit state and for depth argumentλ(δ(p, y)) 6= S ′δ′(p′,y) and
then they contradict the minimality of DEPTH(S) + DEPTH(S ′). Moreoverh is injective. In-
deed, if two states ofO have the same image, they induce two shared automaton accepting the
same language and having minimal depth sum. If the two states are local, from the case (1), we
conclude with a contradiction, otherwise the depth sum is less than DEPTH(S)+DEPTH(S ′).
We have prove thatS andS ′ are isomorphic, and then conclude that SCC(S)∪SCC(S ′) is not
structurally minimal. 2

Notice that the structurally minimal property induces minimal shared automata.

Corollary 2 LetS be a shared automaton. If SCC(S) is structurally minimal thenS is mini-
mal.

4. Shared Automata Implementation

The goal of this section is to translate the theoretical results of previous section, mainly the
notion of structurally minimal set, into an implementation. We borrow the idea of unique ta-
ble for BDD to convert equality of structures into equality of reference (i.e. pointer). Trans-
forming equality of exit automata modulo a permutation of local states is the main challenge
of the implementation. We propose a simple solution to this problem : a light modification of
Hopcroft’algorithm [8,7,9].

4.1. Strong Canonical Representation of Marked Shared Automata

Basic structures for shared automaton representations are exit automata (SC-DFEA), shared
automata, and marked shared automata. Figure 3 gives the definition of these structures in Java
like. Following BDD implementation principles, two hash tables impose a physical canonical
form of exit automaton structures, so that (reference) equality of exit automata (and equality
of shared automata) are equivalent to the structure equality. Hence, these two hash tables are
calledexit automaton unique tableandshared automaton unique table. Proposition 5 gives
constraints on the unique-tables leading to a strong canonical form for marked shared automata.

We propose to reformulate them to take into account implementation constraints :

1. For all shared automata in the shared automaton unique table, the binding function is
injective. Moreover, we impose that the table entries representing the binding function
are ordered lexically with respect to the depth of the shared automaton entry, at last
with respect to the reference of shared automaton entry, and otherwise with respect to
the initial state of the marked shared automaton entry.

Jean-Michel Couvreur / A BDD-like Implementation of an Automata Package 9

1 static final int alphabetSize ; // Alphabet = {0 ... alphabetSize−1}
2

3 class ExitAutomaton {
4 int nbLocalStates ; // LocalStates = {0 ... nbLocalState−1}
5 int nbExitStates ; // ExitStates = {−1 ...− nbOutState}
6 int [][] succ ; // transition function
7 boolean [] isFinal ; // final state caracteristic function
8 }
9

10 class SharedAutomaton {
11 ExitAutomaton exitAutomaton;
12 MarkedSharedAutomaton [] bindFunction ; // image of exit state−k is bindFunction[k−1]
13 int depth;
14 }
15

16 class MarkedSharedAutomaton {
17 SharedAutomaton sharedAutomaton;
18 int initial ; // initial < sharedAutomaton.exitAutomaton.nbLocalStates
19 }

Figure 3. Basic structures for shared automaton representations

2. For all shared automata in the shared automaton unique table, it is not homomorphic
with any entry of the bind function (i.e given any entry of maximal depth of the shared
automaton, it is not homomorphic with this entry).

3. All exit automata (in the exit automaton unique table) are minimal.
4. If two exit automata (in the exit automaton unique table) are isomorphic up to a permu-

tation of the local states, then they are equal.

Note that from the theory to the practice, we add an additional constraint for Condition 1:
ordering the bind function image. This constraint is easy to preserve, and gives two additional
properties. First, when checking condition 2, finding an entry with maximal depth can be done
within constant time. Second, condition 4 has been reduced to a condition on exit automaton
unique table: Condition 1 assumes that the bind functions of two isomorphic shared automata
are equal, so isomorphism is reduced to equality up to a permutation of these local state sets.

Example 4 Tables 1 and 2 give the contents of the two unique tables after the canonisation of
the shared automatonS2 (see Figure 2). Notice that a marked shared automatonSq is simply
denoted by a pair(S, q). In our implementation, we have defined two constants:Zero = SZero

and One = SOne . They represent respectively the automata recognizing no word and all
words. Note thatbindFunction arrays are correctly ordered. However, the choice of the
local state ordering will be justified in the next section and is the result of our adapted Hopcroft
algorithm.

4.2. Transforming DFA into Shared Automata

Transforming DFA into shared automata is the central point of the method. The goal is to
compute and store a marked shared automaton having the same language as the given marked
automaton, and to ensure the integrity constraints of the unique table. The algorithm (see Figure
4) is based on local evaluations of the strongly connected components (SCC) starting with

10 Jean-Michel Couvreur / A BDD-like Implementation of an Automata Package

Réf. nbLocalStates nbOuputStates succ isFinal

OZero 1 0 [[0,0]] [0]

OOne 1 0 [[0,0]] [1]

O1 4 1 [[-1,1],[3,3],[1,-1],[2,0]] [0,1,1,1]

O2 5 2 [[-1,3],[2,0],[4,-1],[-2,1],[1,-2]] [0,1,1,1,1]

Table 1. Exit automaton unique table

Ref exitAutomaton bindFunction depth

SZero OZero [] 0

SOne OOne [] 0

S1 O1 [Zero] 1

S2 O2 [(S1, 1), (S1, 3)] 2

Table 2. Shared automaton unique table

the deepest one, and on the storage of all intermediate results in a computation cache. The
processing of a component is carried out in three steps.

1. The first step consists of calculating a representation of the SCC in terms of shared
automata. Let us note that the values of the entries of the bind function are deduced from
smaller depth SCC evaluations, and then are retrieved from the computation cache. The
requirements of the first integrity constraint are fulfilled while ensuring that entries are
pairwise distinct and correctly ordered.

2. The goal of the second step (see Ligne 12 in Figure 4) is to test whether a shared
automaton is homomorphic with one of these entries, and more particularly one with a
greater depth entry. If so, the homomorphism maps any state of the SCC to an equivalent
marked shared automaton. Otherwise, the computation must precede on the last step.

3. The last step (see Ligne 20 in Figure 4) consists in minimizing the exit automaton in a
strongly canonical form, and then to ensure the two last integrity constraints.

The first step consists in a SCC traversal computation and the transformation of SCCs
into non-canonical shared automata are easy to implement. Note however that it is useless to
continue the computation beyond states whose result is in the cache or corresponds to a state
of a shared automaton already in the unique table. This technique will play a major role for the
efficiency of our method.

The algorithm carried out in step 2 is quite simple: once having selected a local statep of
the shared automaton and a suitable entry of the bind function, one has to check all local states
q of the selected entry to see whether there exists an homomorphism binding statep to state
q. This test consists in traversing the shared automaton from statep, calculating new values of
the homomorphism while checking the coherence of the results. Note that the complexity of
this algorithm is inO(Σ) · O(n) · O(n′) wheren, n′ denote the number of local states of the
shared automaton and its selected entry. (homomorphicCheck)

The implementation of step 3 (see Figure 5) is based on a light modification of Hopcroft’s
algorithm for minimizing automata [8,7,9]. Our adapted Hopcroft algorithm (see Figure 6) is
extended to manage exit automata. This goal is carried out in lines 25-27: not only do the
final states induce an initial equivalence class partition, the predecessor sets of each exit states
require new refinements of the partition. For the remainder, the algorithm is almost the exact

Jean-Michel Couvreur / A BDD-like Implementation of an Automata Package 11

1 HashMap cache =newHashMap();
2

3 MarkedSharedAutomaton canonical(MarkedAutomaton A){
4 for all SCC of A in a topologic order {
5 SharedAutomaton shared ;
6 MarkedAutomaton [] f ;
7

8 Assign to "shared" be a (non canonical) shared automaton representation of SCC
9 Assign to "f" be the isomorphism linking local states of "shared" to states of SCC

10

11 // check if shared is homomorphic to an image of the bind function
12 MarkedSharedAutomaton [] g = homomorphicCheck(shared);
13 if (g != null) {
14 for all "p" local state of "shared" {
15 cache[f [p]] = g[p];
16 }
17 }
18 else {
19 // compute a canonical represention of the exit automaton
20 ExitAutomaton,int [] < exitAutomaton,h> = minimize(shared.exitAutomaton);
21

22 SharedAutomaton newShared
23 = unique(newSharedAutomaton(exitAutomaton,shared.bindFunction));
24 for all "p" local state of "shared" {
25 cache[f [p]] = newmarkedSharedAutomaton(newShared,h[p]);
26 }
27 }
28 }
29 return cache[A];
30 }

Figure 4. Transforming a marked automaton into shared automata

copy of the original algorithm with Gries’s improvement. However, we add a sort instruction
of the setpivot in line 9 to force the algorithm to procede independently of the initial order of
local states. The order of the steps of refinement of classes is not important to the validity of the
algorithm. Within our framework, this modification produces benefits, as when the algorithm is
applied to a minimal exit automaton, local states are ordered independently to their initial order.
As a result, applying our adapted Hopcroft algorithm twice (see Ligne 2 and 12 of Figure 5)
produces a strong canonical minimal automaton. We did not go through the fine data structures
leading to aO(|Σ|) ·O(n · lg n) time complexity for classical algorithm [7,9]; however, we can
prove that our modification does not increase the time complexity.

Assuming that hash tables are perfect, the time complexity of the transformation algorithm
is O(|Σ|) ·O(scc) ·O(n) wherescc is the number of states of the largest SCC. Note that when
the sizes of the components remain bounded (for instance, acyclic automata), the algorithm has
a linear time complexity. In theory, perfect hash table is ideal, in practice one may prefer tree
map structures to reduce the worst case time complexity. Informally, we obtain an overhead
for table management of the formO(|Σ|) ·O(n) ·O(lg(n + K)) where K indicates a constant
describing the size of the data stored in unique tables.

Example 5 Figure 7 gives the representation of two (non canonical) shared automata for the

12 Jean-Michel Couvreur / A BDD-like Implementation of an Automata Package

1 ExitAutomaton,int [] minimize(ExitAutomaton exitAutomaton){
2 ExitAutomaton,int [] < minimal,h> = adaptedHopcroft(exitAutomaton);
3

4 // if "exitAutomaton" is minimal then "minimal" is the canonical form
5 if (minimal.nbLocalState == exitAutomaton.nbLocalState) {
6 return <minimal,h>;
7 }
8

9 else { // otherwise "minimal" is minimal , and then we compute a canonical form
10 int [] g;
11 int [exitAutomaton.nbLocalState] res ;
12 <minimal,g> = adaptedHopcroft(minimal);
13 for all " i " local state of "exitAutomaton" {
14 res [i] = g[h[i]];
15 }
16 return <minimal,res>;
17 }
18 }

Figure 5. Canonical algorithm for exit automata

evaluation of the intersection and the union of shared automata(S1, 3) and(S2, 1). Note that
we stop the evalution on states identified as exit states. We simply use the well know assertions:
A∩∅ = ∅, A∩A = ∅, A∪∅ = A andA∪A = A. For this example, we use simple assertions to
stop the evaluation. From the implementation point of view, there are integrated in the definition
of the (non canonical) marked automaton representing the result of the operation. Another way
to stop the evaluation is to retrieve the resulting sub-expression from the computed cache.

The canonical algorithm applied to the intersection automaton stops with the detection
of an homomorphism. Indeed, this shared automaton is exactly automatonS3 (see Figure 2).
Then, before returning the result(S3, 1), the algorithm stores in the cache table the following
sub-results:(S1, 3) ∩ (S2, 1) = (S3, 1), (S1, 2) ∩ (S2, 2) = (S3, 2), (S1, 1) ∩ (S2, 4) =
(S3, 4), (S1, 0) ∩ (S2, 0) = (S3, 0), (S1, 1) ∩ (S2, 3) = (S3, 3).

The canonical algorithm applied to the union automaton leads the minimisation of the exit
automaton. On this example, the adapted Hopcroft is applied only once, because the shared
automaton is already minimal. However, its application has ordered the local states in a canon-
ical form. Note that the resulting exit automaton is exactlyO1 and then its canonical value
will be recoved from the exit automaton unique table. Thus, before returning the result(S2, 1),
the algorithm stores in the cache table the following sub-results:(S1, 3) ∪ (S2, 1) = (S2, 1),
(S1, 2) ∪ (S2, 2) = (S2, 2), (S1, 1) ∪ (S2, 4) = (S2, 4), (S1, 0) ∪ (S2, 0) = (S2, 0),
(S1, 1) ∪ (S2, 3) = (S2, 3).

4.3. Implementing DFA operations

The transformation function is mainly the only operation needed to design new automaton
operations. We chose the Java language to implement our package for its object-oriented pro-
gramming paradigm. The abstract definition of a marked automatonMarkedAutomaton is
designed as an interface whose contract is primarilyboolean isFinal() andMarkedAutomaton
succ(letter a) . As an example, the union operator is obtained by defining a correspond-
ing new classUnionMarkedAutomaton implementingMarkedAutomaton with two at-

Jean-Michel Couvreur / A BDD-like Implementation of an Automata Package 13

1 int nbClass ; // number of classes of the partition
2 Set [] B; // partition of the local states
3 Set L; // L is a set of pairs (i ,a) of classes and letter to be traited
4 Set [][] pred ; // for all " s " local state and "a" letter : pred[s][a] ={s ’: succ[s ’][a]=s};
5

6 void refinePartitionWith (Set U) {
7 Set pivot = { i | B[i]∩U 6= ∅∧B[i]∩U 6=B[i]};
8 sort (pivot);
9 for all " i " in pivot (in the order) {

10 B[i], B[nbClass] = B[i]\U, B[i]∩U;
11 for all "a" letter {
12 if ((i ,a) /∈L and0 < |B[i]| ≤ |B[nbClass]|)
13 L.put(i ,a);
14 else
15 L.put(nbClass,a);
16 }
17 nbClass++;
18 }
19 }
20

21 ExitAutomaton,int [] adaptedHopcroft(ExitAutomaton exitAutomaton) {
22 nbClass = 1;
23 B[0] = local state set of exitAutomaton;
24 refinePartitionwith (final state set of exitAutomaton);
25 for all "u" exit state and all "a" letter {
26 refinePartitionwith (pred[u][a]);
27 }
28 while (! L.isEmpty ()) {
29 int , int (i ,a) = L.get ();
30 refinePartitionWith (

S
s∈B[i] pred[s][a]);

31 }
32 Assign to "minimal" to be the quotient automaton
33 Assign to "h" to be the mapping which associates to each local state itsclass index
34 return <minimal,h>;
35 }

Figure 6. Adapted Hopcroft’s algorithm for exit automata

0

0

1

1

0

1 0

1

e0 -> (S1,3)

1 0

(S1,3) ∩ (S2,1)

(S1,0) ∩ (S2,0)

(S1,1) ∩ (S2,3)

(S1,2) ∩ (S2,2)

(S1,1) ∩ (S2,4)

e1 -> Zero

0

0

1

1

0

1 0

1

e1 -> (S1,3)

1 0

(S1,3) ∪ (S2,1)

(S1,0) ∪ (S2,0)

(S1,1) ∪ (S2,3)

(S1,2) ∪ (S2,2)

(S1,1) ∪ (S2,4)

e0 -> (S1,1)

Figure 7. Examples of the evaluation of two set operations on shared automata

14 Jean-Michel Couvreur / A BDD-like Implementation of an Automata Package

t3

t4t2

t1

A B C D E

N LASH PresTaf

2 3s 2s

5 10s 4s

10 29s 10s

20 83s 27s

30 151s 48s

40 - 80s

50 - 122s

N LASH PresTaf

50 16s 1s

100 38s 2s

200 89s 3s

500 256s 7s

1000 - 14s

5000 - 67s

10000 - 130s

no invariant with invariant

Table 3. Experimentation results for producer-consumer system

tributes, and by running a command like "A=canonical(new IteMarkedAutomaton(A1,A2)) ".
In the same way, many new operations can be designed.

5. Experimentations

The goal is to evaluate the benefits of shared automaton techniques for verification problems.
We have implemented a basic Presburger arithmetic package, named PresTaf. Binary automata
have been used as a data structure to represent Presburger formula, or rather, the set of solu-
tions to Presburger formulas. We do not describe the technique to transform a Presburger for-
mula into an automaton. This information is not relevant to interpret the experimental results.
We have mainly followed the construction proposed in [10]. It is quite natural to compare our
implementation with the LASH package. Indeed, this tool has good practice for transforming
Presburger formula to binary automata, while remaining traditional about automata operations.
Thus, experimentation measures the benefits that our method can bring to such systems. We
chose a standard verification problem for our experiments: the backward symbolic state space
exploration for Petri nets. This problem is technically interesting for several reasons: the tran-
sition relation can be represented as a Presburger formula where variable states are used for
place marking before or after firing a transition; backward exploration is finite for some kind
of marking set (the upward closed set); the computation uses operations on Presburger formula
in an intensive way. We do not claim to evaluate the most effective method, specialised studies
concerning the symbolic state space exploration [2] are out of the scope of our experimentation.

Tables 3 gives backward exploration running times applied to Petri net at the left of the
tables, with initial exploration marking setsSN = {M : M(C) ≥ N}. We test two types of
techniques: one without any optimization, the other one where the exploration is restricted to
markings fulfilling the invariant propertiesM(A) + M(B) = 1 andM(D) + M(E) = 1. Ex-
perimental results highlight the interest of shared automata. But applying some optimisations
(as invariants) is necessary to obtain good experimental efficiency. Table 4 confirms previous
experimental results when backward exploration with invariant is applied to some Petri nets.
As BDD [11], the main factor of this benefits is the computed cache. Indeed, the iterations
during a state space exploration share many sub-problems. It seem that shared automata are
a first step towards an efficient BDD-like representation of automata for infinite state space
model checking.

Jean-Michel Couvreur / A BDD-like Implementation of an Automata Package 15

Model | {Place} | | {Transition} | LASH PresTaf

LEA 30 35 6min 36s 1min 13s

Manufacturing System 14 13 9min 37s 1min 4s

CSM 13 8 14min 38s 1min 2s

PNCSA 31 36 66min 3min22

ConsProd 18 14 1316min 3min55

Table 4. Experimentation results for some Petri nets

6. Conclusions

In this paper, we design the first data structure for automata manipulations based on the main
BDD principles: a strong canonical form for the automata, the use of a unique table and a
computed cache. Experimentions show the great benefit of the new data structure when applied
in symbolic state space exploration of infinite systems. The major future work concerns the
conception of new BDD-oriented structures based on arbitrary finite graphs. An interesting
perspective is the application of the shared automata techniques to the symbolic structures used
in MONA [6], which are based on a BDD-like representation of the transition function without
any advanced sharing techniques tuned for automata.

References

[1] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast Acceleration of Symbolic Transition
systems. InCAV ’03, volume 2725 ofLNCS, pages 118–121, 2003.

[2] C. Bartzis and T. Bultan. Efficient symbolic representations for arithmetic constraints in verification.
International Journal of Foundations of Computer Science, 14(4):605–624, 2003.

[3] A. Bouajjani, B. Jonsson, M. Nilsson, and J. d’Orso. Algorithmic improvements in regular model
checking. InCAV ’03, volume 2725 ofLNCS, pages 236–248, 2003.

[4] R. Bryant. Graph based algorithms for boolean function manipulation.IEEE Transactions on
Computers, 35(8):677–691, 1986.

[5] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic Model Checking:
10e20 states and beyond.Information and Computation, 98(2):97–109, 1998.

[6] J. Elgaard, N. Klarlund, and A. Moller. Mona 1.x: new techniques for WS1S and WS2S. InCAV
’98, volume 1427 ofLNCS, 1998.

[7] D. Gries. Describing an algorithm by Hopcroft.Acta Informatica, 2:97–109, 1973.
[8] E. Hopcroft. An n log n algorithm for minimizing the states in a finite automaton. In Z. Kohavi,

editor,Theory of Machines and Computations, pages 189–196. Academic Press, 1971.
[9] T. Knuutila. Re-describing an algorithm by Hopcroft.Theoretical Computer Science, 250:333–363,

2001.
[10] P. Wolper and B. Boigelot. On the construction of automata from linear arithmetic constraints. In

TACAS’00, volume 1785 ofLNCS, pages 1–19, 2000.
[11] B. Yang, R. E. Bryant, D. R. O’Hallaron, A. Biere, O. Coudert, G. Janssen, R. K. Ranjan, and

F. Somenzi. A performance study of BDD-based model checking. InFMCAD’98, pages 255–289,
1998.

