
A Polynomial Time Presburger Criterion and Synthesis

for Number Decision Diagrams∗

Jérôme Leroux†

IRISA/INRIA Rennes, Campus de Beaulieu, Rennes, France.

jleroux@irisa.fr

Abstract

Number Decision Diagrams (NDD) are the automata-

based symbolic representation for manipulating sets of in-

teger vectors encoded as strings of digit vectors (least or

most significant digit first). Since 1969 [8, 29], we know

that any Presburger-definable set [26] (a set of integer vec-

tors satisfying a formula in the first-order additive theory of

the integers) can be represented by a NDD, and efficient al-

gorithm for manipulating these sets have been recently de-

veloped [31, 4]. However, the problem of deciding if a NDD

represents such a set, is a well-known hard problem first

solved by Muchnik in 1991 [23, 24, 5] with a quadruply-

exponential time algorithm. In this paper, we show how to

determine in polynomial time whether a NDD represents

a Presburger-definable set, and we provide in this positive

case a polynomial time algorithm that constructs from the

NDD a Presburger-formula that defines the same set.

1. Introduction.

Presburger arithmetic [26] is a decidable logic used in

a large range of applications. As described in [17], this

logic is central in many areas including integer program-

ming problems [28], compiler optimization techniques [25],

program analysis tools [7, 11, 10] and model-checking

[1, 9, 16]. Different techniques [12] and tools have been de-

veloped for manipulating the Presburger-definable sets (the

sets of integer vectors satisfying a Presburger formula): by

working directly on the Presburger-formulas [14] (imple-

mented in OMEGA [25]), by using semi-linear sets [13] (im-

plemented in BRAIN [27]), or by using NDD (an automa-

ton that represents the sets of integer vectors encoded as

∗Research funded by the Faculté des arts et des sciences of the Univer-

sité de Montréal and by the Natural Sciences and Engineering Research

Council of Canada through a discovery grant held by Pierre McKenzie.
†This work was carried out during the author’s postdoctoral studies at

Département d’Informatique et de Recherche Opérationnelle, Université

de Montréal, Montréal, QC Canada

strings of digit vectors (least or most significant digit first))

[30, 4] (implemented in FAST [2], LASH [16] and MONA

[15]). Presburger-formulas and semi-linear sets lack canon-

icity. As a direct consequence, a set that possesses a simple

representation could unfortunately be represented in an un-

duly complicated way. Moreover, deciding if a given vec-

tor of integers is in a given set, is at least NP-hard [3, 13].

On the other hand, a minimization procedure for automata

provides a canonical representation for NDD-definable sets

(a set represented by a NDD). That means, the NDD that

represents a given set only depends on this set and not on

the way we compute it. For these reasons, NDD are well

adapted for applications that require a lot of boolean ma-

nipulations such as model-checking.

Whereas there exist efficient algorithms for computing a

NDD that represents the set defined by a given Presburger

formula [14, 31, 4], the inverse problem of computing a

Presburger-formula from a Presburger-definable set repre-

sented by a NDD, called the Presburger synthesis problem,

was first studied in [18] and only partially solved in expo-

nential time (resp. doubly exponential time) for convex in-

teger polyhedrons [17] (resp. for semi-linear sets with the

same set of periods [22]). Presburger-synthesis has many

applications. For example, in software verification, we are

interested in computing the set of reachable states of an in-

finite state system by using NDD representations and in an-

alyzing the structure of these sets with a tool such as [25]

which manipulates Presburger-formulas. The Presburger-

synthesis problem is also central to a new generation of

constraint solvers for Presburger arithmetic that manipulate

both NDD and Presburger-formulas [17, 14].

The Presburger-synthesis problem is naturally related

to the problem of deciding whether a NDD represents

a Presburger-definable set, a well-known hard problem

first solved by Muchnik in 1991 [23] with a quadruply

exponential time algorithm. To the best of our knowledge

no better algorithm for the full class of Presburger-definable

sets has been proposed since 1991.

In this paper, we prove that we can decide in polynomial

time whether a NDD (least significant digit first) represents

a Presburger-definable set. Moreover, for a NDD that

represents such a set, we provide an algorithm that com-

putes in polynomial time a Presburger-formula that defines

the set represented by the NDD. These results rely on a

deeper analysis of the structure of a NDD that represents a

Presburger-definable set, and on a new geometric point of

view on the Presburger-definable sets (whence the length

of section 3).

In section 3 we recall some geometrical objects used

in the sequel. In section 4, we describe the size of

the structures manipulated in this paper for complexity

issue. Section 5 contains the definition of NDD and

introduces the notion of detectable sets that corresponds

to sets obtained by modifying the set of final states of

a NDD. In section 6, we provide our new geometric

point of view of the Presburger-definable sets. Section 7

shows that this geometrical point of view can be “used

in polynomial time” from a Presburger-definable NDD.

Finally, in section 8, we prove the main results of this paper.

Proofs:

Some proofs had to be omitted due to space constraints.

A self-contained long version of this paper (with detailed

proofs for all results) can be obtained from the author or as

a technical report [21].

2. Preliminaries

Throughout this paper, intersection, union, difference

and symmetric difference of two sets A and B are written

A ∩ B, A ∪ B, A\B, and A∆B = (A\B) ∪ (B\A). We

denote by N, Z, Q respectively the set of non-negative in-

tegers, integers, and rational numbers. The cardinality of a

finite set X is written |X | ∈ N. The set of functions from

a set X to a set Y , also called sequences of elements in Y

indexed by X is written Y X . A function f ∈ Y X is also

denoted by f : X → Y . For such a function and for any

A ⊆ X and B ⊆ Y , we define f(A) = {f(a); a ∈ A} and

f−1(B) = {x ∈ X ; f(x) ∈ B}.

The set Xm is called the set of vectors with m ∈ N

components in a set X . Given an integer i ∈ {1, . . . , m}
and a vector x ∈ Xm, the i-th component of x is written

x[i] ∈ X . Vector ej ∈ Qm is defined by ej [j] = 1 and

ej [i] = 0 for any i ∈ {1, . . . , m}\{j}. Vector (0, . . . , 0) ∈
Qm is denoted by 0. Vectors x + y and t.x are defined

by (x + y)[i] = (x[i]) + (y[i]) and (t.x)[i] = t.(x[i]) for

any i ∈ {1, . . . , m}, x, y ∈ Qm, t ∈ Q. For any x, y ∈
Qm, let 〈x, y〉 =

∑m

i=1 x[i].y[i] be the dot product. For any

subset X ⊆ Qm, we denote by X⊥ = {y ∈ Qm; ∀x ∈
X 〈x, y〉 = 0}. For any x ∈ Qm, let us consider the norm

||x||∞ = maxi |x[i]| where |x[i]| is the absolute value of

x[i]. We naturally define A+B = {a+ b; (a, b) ∈ A×B}
and T.A = {t.a; (t, a) ∈ T × A} for any A, B ⊆ Qm

and T ⊆ Q. For any a, b ∈ Qm and t ∈ Q, let us define

a + B = {a} + B, A + b = A + {b}, t.A = {t}.A and

T.a = T.{a}.

The set of words over a non-empty finite alphabet Σ is

written Σ∗. The length of a word σ is written |σ| ∈ N. The

word of length 0 is written ǫ and we denote by Σ+ the set

Σ+ = Σ∗\{ǫ}. The concatenation of two words σ and σ′ in

Σ∗ is written σ.σ′. Such a word σ is called a prefix of σ.σ′

(respectively a strict prefix if σ′ 6= ǫ).

A deterministic and complete automaton A is a tuple

A = (Q, Σ, δ, q0, F); Q is the finite set of states, Σ is the

finite alphabet, δ : Q × Σ → Q is the transition function,

q0 ∈ Q is the initial state and F ⊆ Q is the set of final

states. The Cartesian product A1 ×F A2 of two automata

A1 = (Q1, Σ, δ1, q0,1, F1) and A2 = (Q2, Σ, δ2, q0,2, F2),
where F ⊆ Q1 × Q2, is the deterministic and com-

plete automaton A1 ×F A2 = (Q, Σ, δ, q0, F) defined by

Q = Q1 × Q2, δ((q1, q2), a) = (δ1(q1, a), δ2(q2, a)), and

q0 = (q0,1, q0,2). As usual, we extend δ over Q × Σ∗ such

that δ(q, σ.σ′) = δ(δ(q, σ), σ′). The language L(A) ⊆ Σ∗

accepted by a deterministic and complete automaton A is

defined by L(A) = {σ ∈ Σ∗; δ(q0, σ) ∈ F}. A tuple

(q, σ, q′) such that δ(q, σ) = q′ is called a path from q to

q′ labeled by σ and it is written q
σ
−→ q′ or just q → q′. In

this case, q′ is said reachable from q. A subset Q′ ⊆ Q is

said reachable from a subset Q0 ⊆ Q if there exists a path

from a state in Q0 to a state in Q′. A strongly connected

component Q′ of an automaton A is an equivalence class

for the equivalence relation ⇄ defined over Q by q ⇄ q′ if

and only if q → q′ and q′ → q.

3. Geometric sets

In this paper, we use a large range of geometric sets. Sec-

tion 3.1 recalls the notion of integral dimension. The vector

space definition is given in the next section 3.2. Section 3.3

recalls some properties satisfied by finite unions of affine

spaces, called semi-affine spaces [20]. Section 3.4 gives the

definition of a patterns and a modular spaces, and the final

one provides the definition of polyhedrons and boundaries.

3.1. Integral dimension and V degenerate subsets

Given a subset X ⊆ Zm, there exists a minimal integer

dim(X) ∈ {−1, . . . , m} (for ≤), called the integral dimen-

sion, satisfying the following inequality:

sup
n∈N\{0}

(

|{x ∈ X ; ||x||∞ ≤ n}|

ndim(X)

)

< +∞

Remark 3.1 Let X ⊆ Zm. We have dim(X) = −1 if and

only if X is empty, dim(X) = 0 if and only if X is a non-

empty finite set, and dim(X) ≥ 1 if and only if X is infinite.

Without ambiguity, given a subset X ⊆ Qm, the integer

dim(Zm ∩ X) is also denoted by dim(X), and called the

integral dimension of X .

A subset X ⊆ V where V ⊆ Qm is said V -degenerate

if dim(X) < dim(V). Let us consider the equivalence re-

lation ∼V defined over the subsets of V by X1 ∼V X2

if and only if X1∆X2 is V -degenerate. The equivalence

class [X]V of a subset X ⊆ V satisfies [X]V = {X ′ ⊆
V ; dim(X∆X ′) < dim(V)}.

3.2. Vector spaces

Recall that a vector space V of Qm is a subset of Qm

such that there exists a finite subset V0 ⊆ Qm satisfying

V =
∑

v0∈V0
Q.v0 (when V0 = ∅ then V = {0}). Such a

vector space V is said generated by V0. The dimension of a

vector space V is defined as the minimal integer n ∈ N (for

≤) such that there exists a finite subset V0 of n vectors in

Qm that generates V .

Lemma 3.2 For any vector space, the integral dimension

and the dimension are equal.

3.3. Semiaffine spaces

An affine space A of Qm is either the empty set or a set

of the form A = a + V where a ∈ Qm and V is a vector

space of Qm. In this case the vector space V is unique,

denoted by
−→
A and called the direction of A. A finite union

of affine spaces S =
⋃

A∈C A is called a semi-affine space

[20] (see figure 1 for an example).

b

A semi-affine space S Its direction
−→
S

Figure 1. Direction of a semiaffine space

Recall that a finite or infinite intersection of affine spaces

remains an affine space. In particular, for any subset

X ⊆ Qm, there exists a unique minimal (for ⊆) affine

space aff(X) that contains X , called the affine hull of X .

As proved by lemma 3.3, a finite or infinite intersection

of semi-affine spaces remains a semi-affine space. Hence,

there also exists a unique minimal (for ⊆) semi-affine space

saff(X) that contains X , called the semi-affine hull of X .

Lemma 3.3 ([20]) The class of semi-affine spaces is stable

by any infinite intersection.

Example 3.4 The semi-affine hull of a finite subset X ⊆
Qm is equal to X because X is the finite union over x ∈ X

of the affine space {x} = x + {0}. The semi-affine hull

of an infinite subset X ⊆ Q is equal to Q (remark that

m = 1). In fact, the class of affine spaces of Q is equal to

{Q, ∅} ∪ {{x}; x ∈ Q}.

Example 3.5 As aff(X) is an affine space and in partic-

ular a semi-affine space that contains X , we deduce that

saff(X) ⊆ aff(X). This last inclusion can be strict as

shown by the example X = {(0, 0), (1, 0), (0, 1)}. In fact,

in this case, we have saff(X) = X and aff(X) = Q2.

A maximal (for ⊆) non-empty affine space A ⊆ S, is

called an affine component of S. The set of affine compo-

nents of S is written comp(S). As proved by the follow-

ing proposition 3.6, a semi-affine space can be canonically

represented by its set of affine components. This is an im-

portant property for implementation issues of a semi-affine

library.

Proposition 3.6 ([20]) The set of affine components

comp(S) of a semi-affine space S is finite and S

is equal to the finite union of its affine components

S =
⋃

A∈comp(S) A.

The direction
−→
S of a semi-affine space S is defined

by
−→
S =

⋃

A∈comp(S)

−→
A . Remark that the semi-affine

space direction definition extends the affine spaces direc-

tion definition because if S is a non-empty affine space then

comp(S) = {S}.

Example 3.7 Let us consider the semi-affine space S =
A1 ∪ A2 ∪ A3 ∪ A4 where A1 = Q.(1, 2), A2 =
(2, 0) + Q.(1, 2), A3 = (0,−3.5) + Q.(20,−3) and A4 =

{(8,−7)} given in figure 1. We have
−→
S = V1 ∪ V3 where

V1 = Q.(1, 2) and V3 = Q.(20,−3). Remark that S

owns 4 affine components comp(S) = {A1, A2, A3, A4},

the set {
−→
A ; A ∈ comp(S)} = {V1, V3, {0}} owns

3 vector spaces and
−→
S owns only 2 affine components

comp(
−→
S) = {V1, V3}. In fact, in general, we have

comp(
−→
S) ⊆ {

−→
A ; A ∈ comp(S)} for any semi-affine

space S.

Following lemma proves that if S is equal to S =
⋃

A∈C A where C is a finite class of affine spaces not neces-

sarily equal to comp(S), then
−→
S =

⋃

A∈C

−→
A .

Lemma 3.8 For any finite class C of affine spaces, the di-

rection of the semi-affine space S =
⋃

A∈C A is equal to
−→
S =

⋃

A∈C

−→
A .

The semi-affine space
−−−−−→
saff(X), is written

−→
saff(X).

3.4. Patterns and V modular spaces

A pattern P of Zm is a subset of Zm such that there

exists n ∈ N\{0} and a subset B ⊆ Zm such that P =
B + n.Zm (see figure 2 and example 3.9). Intuitively, a

pattern is a subset of Zm obtained from a “motif B repeated

in all directions”. Remark that a subset P ⊆ Zm is a pattern

if and only if there exists n ∈ N\{0} such that P = P +
n.Zm, and in this case P = B + n.Zm where B = P ∩
{0, . . . , n − 1}m.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Pattern P semi-affine S

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

M = P ∩ S

Figure 2. A Q.(1, 1)modular space M

A V -modular space M , where V is a vector space, is a

subset of the form M = P ∩ S where P is a pattern and

S is a semi-affine space obtained as a finite union of affine

spaces A satisfying
−→
A = V .

Example 3.9 Let us consider the pattern P = B + n.Z2

where n = 3 and B = {(0, 0), (1, 1), (2, 2), (0, 2)}, the

vector space V = Q.(1, 1), the semi-affine space S = V ∪
((0, 2) + V) ∪ ((0,−1) + V) and the V -modular space

M = P ∩ S. Sets P , S and M are given in figure 2.

3.5. V polyhedrons

Here, we define V -polyhedrons, we characterize V -

degenerate V -polyhedrons, and we introduce the notion of

V -boundary and possible V -boundary of a V -polyhedron.

The V -half space HV,α,#,c where V is a vector space,

α ∈ V \{0}, # ∈ {≤, <, >,≥} and c ∈ Q is defined

by HV,α,#,c = {x ∈ V ; 〈α, x〉#c}. We also denote by

HV,α,=,c, the affine space HV,α,=,c = {x ∈ V ; 〈α, x〉 =
c} (even equal to the vector space V ∩ (Q.α)⊥ if c = 0).

A V -polyhedron C is a subset of V defined as a boolean

combination of V -half spaces HV,α,#,c (see figure 3 and

example 3.10). A possible boundary S of such a V -

polyhedron C is the semi-affine space S =
⋃

α∈D V ∩

(Q.α)⊥ where D is the finite set of α ∈ V \{0} used to de-

fine C as a boolean combination of V -half spaces HV,α,#,c.

Example 3.10 Let us consider the vector space V = Q2,

and the V -polyhedrons C0, C1 and C2 given in figure 3 and

C0 C1 C2

Figure 3. Q2polyhedrons

defined by C0 = {x ∈ Q2; (x[1] ≤ 4.x[2]) ∧ (x[2] ≤
4.x[1])}, C1 = {x ∈ Q2; −1 ≤ x[1] − x[2] ≤ 1},

and C2 = C0\C1. Remark that C0 and C2 are non V -

degenerate, and C1 is V -degenerate. Moreover, S0 = {x ∈
Q2; (x[1] = 4.x[2]) ∨ (x[2] = 4.x[1])} is a possible V -

boundary of C0, S1 = {x ∈ Q2; x[1] = x[2]} is a pos-

sible V -boundary of C1, and S2 = S0 ∪ S1 is a possible

V -boundary of C2.

Remark 3.11 A V -polyhedron is equal to a finite union of

convex V -polyhedrons
⋂

α∈D HV,α,#α,cα
, where D is a fi-

nite subset of V \{0}, (#α)α∈D is a sequence in {≤, <, >

,≥}D and (cα)α∈D is a sequence in QD.

The following proposition 3.12 provides a geometrical

characterization of V -degenerate V -polyhedrons.

Proposition 3.12 A V -polyhedron C is V -degenerate if

and only if there exists a finite subset D ⊆ V \{0} such

that C ⊆
⋃

α∈D{x ∈ V ; −1 ≤ 〈α, x〉 ≤ 1}.

The following lemma 3.13 shows that any V -polyhedron

C owns a minimal (for ⊆) possible V -boundary (up to V -

degenerate sets) called the V - boundary of C and written

boundV (C).

Lemma 3.13 Let C be a V -polyhedron. There exists

a unique minimal (for ⊆) semi-affine space boundV (C)
called the V -boundary of C such that boundV (C) is a pos-

sible V -boundary of a V -polyhedron in [C]V (see section

3.1).

Example 3.14 Let us consider the V -polyhedrons C0, C1

and C2 defined in example 3.10, and given in figure 3. We

have boundV (C1) = ∅ and boundV (C0) = boundV (C2) =
{x ∈ Q2; (x[1] = 4.x[2]) ∨ (x[2] = 4.x[1])}. Remark in

particular that boundV (C2) is not a possible V -boundary

of C2.

4. Size and complexity

This section provides the size of the manipulated struc-

tures in this paper.

Naturally, the size of a rational number x = n
d

where

n and d ∈ N\{0} are relatively prime, a vector v ∈ Qm,

a matrix M ∈ Mm,n(Q), a word σ ∈ Σ∗ are defined by

size(x) = ln(1+|n|)+ln(1+d), size(v) =
∑m

i=1 size(v[i]),
size(M) =

∑m
i=1

∑n
j=1 size(Mij), size(σ) = |σ|. ln(1 +

|Σ|).The size of an affine space A implicitly generated

by a finite set A0 ⊆ Qm is defined by size(A) =
∑

a0∈A0
size(a0). The size size(S) of a semi-affine space

S is given by size(S) =
∑

A∈comp(S) size(A). The size of

a finite set C of rational numbers, vectors, matrices, and so

on, is given by size(C) =
∑

Y ∈C size(Y).

Recall that almost all the natural operations over affine

spaces can be done in polynomial time (in the dimension

m ≥ 1).

The size of a deterministic and complete automaton A

over an alphabet Σ is given by size(A) = |Q|.|Σ|.

5. NDD and r-definable sets

Sets of integer vectors that can be represented by au-

tomata, called Number decision Diagram (NDD), thanks to

a least or most significant digit first decomposition, are re-

lated to the notion of r-definable [5] where r ≥ 2 is an

integer called the basis of decomposition. In this section

this notion is recalled. Moreover, in section 5.1 and 5.2, the

sets obtained by modifying respectively, the initial state and

the set of final states of a NDD, are characterized. In the

last section 5.3, we introduce the notion of terminal compo-

nents, some particular strongly connected components of a

NDD.

Given an integer r ≥ 2, a subset X ⊆ Nm, where m ≥ 1
is called the dimension, is said r-definable if it is definable

in the first order logic 〈Z, +,≤, Vr〉 where Vr : Z → Z is

the valuation function defined by Vr(0) = 1 and Vr(x) is

the greatest power of r that divides x ∈ Z\{0}.

Example 5.1 Let r = 2. For any k1, k2 ∈ N, valuation

V2(2
k1 + 2k2) is equal to 2k where k = min{k1, k2} if

k1 6= k2 and k = k1 + 1 = k2 + 1 otherwise.

Recall that the first order logic 〈Z, +,≤, Vr〉 is decid-

able. The proof of this well known result is based on the

decomposition of an integer vector into a least or most sig-

nificant word of digit vectors over the alphabet Σrm =
{0, . . . , r − 1}m. Following notations introduced in [19],

this decomposition can be provided thanks to the following

function γb, where b ∈ Σrm .

γb : Zm −→ Zm

x −→ r.x + b

Given a sequence b1, ..., bk of k ≥ 1 digit vectors in Σrm ,

we have the following equality also called the least signifi-

cant digit first decomposition:

γb1 ◦ · · · ◦ γbk
({(0, . . . , 0)}) =

k
∑

i=1

ri−1bi

Hence, the vector ρ(σ) = γσ({0, . . . , 0}) ∈ Nm can be

naturally associated to the word σ = b1 . . . bk, where γσ is

the function defined by the following equality (function γǫ

is equal to the identity function γǫ(x) = x):

γb1...bk
= γb1 ◦ · · · ◦ γbk

q1 q0 q2

q4q3 q⊥

(0, 0) (0, 0)

(1, 1) (0, 0) (1, 1)

(1, 0)

(−,−)

(0, 1) (1, 0)

(0, 1)(1, 0)

(0, 1)

(1,−) (−, 1)

(0,−) (−, 0)

(1, 1)

Figure 4. A NDD representing {x ∈ N2; (x[1] =
2.x[2]) ∨ (x[2] = 2.x[1])} where − ∈ {0, 1}

q0 q1 q3 q4

q2

(0,−) (0, 0) (1, 1) (1,−)

(1,−) (0,−)

(0, 1) (1, 0)
(1, 0)

(0, 1)

(0,−)

(1, 1)

(1,−)

(0, 0)

Figure 5. A NDD representing {x ∈ N2; x[2] ≥
4.x[1]} where − ∈ {0, 1}

Definition 5.2 ([31, 4]) A (least significant digit first)

Number Decision Diagram (NDD) is a deterministic and

complete automaton over Σrm such that for any state q ∈
Q, we have q ∈ F if and only if δ(q, 0) ∈ F .

The set X = ρ(L(A)) is called the set represented by A

and such a set is said NDD-definable (see figure 4 or 5 for

an example of NDD). Recall that a set X is NDD-definable

if and only if it is r-definable [5].

Remark 5.3 There exists some deterministic and complete

automata A1, A2 and A such that L(A1)∩L(A2) = L(A),
but X1∩X2 6= X where X1 = ρ(L(A1)), X2 = ρ(L(A2))
and X = ρ(L(A)). This side effect is no longer true

for NDD thanks to the condition q ∈ F if and only if

δ(q, 0) ∈ F for every q ∈ Q. In fact, given two NDD A1 =
(Q1, Σrm , δ1, q0,1, F1) and A2 = (Q2, Σrm , δ2, q0,2, F2)
representing respectively two sets X1 and X2, the Carte-

sian product A1 ×F#
A2 where # ∈ {∪,∩, ∆}, F∪ =

(Q1 × F2) ∪ (F1 × Q2), F∩ = F1 × F2, and F∆ =
(F1 × (Q2\F2))∪ ((Q1\F1)×F2), is a NDD representing

X1#X2.

Remark 5.4 A (most significant digit first) Number Deci-

sion Diagram (NDD) that represents a set X ⊆ Nm is

a deterministic and complete automaton A over Σrm that

recognizes the mirror of ρ−1(X) and defined as L(A) =
{a1 . . . an; an . . . a1 ∈ ρ−1(X)}.

5.1. Moving the initial state

The set represented by the NDD Aq when the initial state

q0 of a NDD A is replaced by another state q ∈ Q, can be

easily characterized thanks to the function γσ .

Proposition 5.5 Let A be a NDD that represents a set X .

For any path q0
σ
−→ q, the NDD Aq represents γ−1

σ (X).

When a set X ⊆ Nm is implicitly represented by a NDD

A (not necessary minimal), we denote by Xq the set repre-

sented by the NDD Aq. Proposition 5.5 shows that for any

path q
σ
−→ q′, we have Xq′ = γ−1

σ (Xq).

Example 5.6 Let us consider the NDD A presented in fig-

ure 4 that represents the set X = {x ∈ N2; (x[1] =
2.x[2]) ∨ (x[2] = 2.x[1])}. We have Xq0

= X , Xq⊥ = ∅,

Xq1
= {x ∈ N2; x[1] = 2.x[2] + 1}, Xq2

= {x ∈
N2; x[2] = 2.x[1] + 1}, Xq3

= {x ∈ N2; x[1] = 2.x[2]},

Xq4
= {x ∈ N2; x[2] = 2.x[1]}.

Example 5.7 Let us consider the NDD A presented in fig-

ure 5 that represents the set X = {x ∈ N2; x[2] ≥
4.x[1]}. For any c ∈ {0, 1, 2, 3, 4}, we have Xqc

= {x ∈
N2; x[2] ≥ 4.x[1] + c}.

5.2. Replacing the set of final states

In order to characterize the set represented by the NDD

AF ′

when the set of final states F of a NDD A is replaced

by another set of states F ′ ⊆ Q, we introduce the notion of

semi-eyes and detectable sets.

Let A be a NDD. We consider the binary relation ∼ over

Q, defined by q ∼ q′ if and only if δ(q, 0∗) ∩ δ(q′, 0∗) 6=
∅. As A is deterministic, ∼ is an equivalence relation. An

equivalence class for this relation is called an eye. A finite

union of eyes is called a semi-eye. Naturally, for any subset

F ′ ⊆ Q, the automaton AF ′

is a NDD if and only if F ′ is a

semi-eye.

Example 5.8 Let A be the NDD given in figure 4. The set of

states Q can be partitioned into 4 eyes Y1, Y2, Y3, Y4 where

Y1 = {q1, q2, q⊥}, Y2 = {q0}, Y3 = {q3} and Y4 = {q4}.

Example 5.9 Let A be the NDD given in figure 5. The set

of states Q can be partitioned into 3 eyes Y1, Y2, Y3 where

Y1 = {q0} and Y2 = {q1} and Y3 = {q2, q3, q4}.

Let A be a NDD and remark that for any X ′ ⊆ Nm, there

exists a unique minimal (for ⊆) semi-eye FA(X ′) such that

X ′ is included in the set represented by AFA(X′). In gen-

eral, this inclusion is strict. However, for detectable sets, it

becomes an equality.

A set X ′ ⊆ Zm is said detectable in a set X ⊆ Zm if for

any pair of words (σ1, σ2) such that γ−1
σ1

(X) = γ−1
σ2

(X),
we have γ−1

σ1
(X ′) = γ−1

σ2
(X ′).

Remark 5.10 When X and X ′ are respectively represented

by two minimal NDD A = (Q, Σrm , δ, q0, F) and A′ =
(Q′, Σrm , δ′, q′0, F

′), we proved in [21] that X ′ is de-

tectable in X if and only if for any pair of words (σ1, σ2)
such that δ(q0, σ1) = δ(q0, σ2), we have δ′(q′0, σ1) =
δ′(q′0, σ2).

Proposition 5.11 Let X ⊆ Nm be represented by a NDD

A. For any set X ′ ⊆ Nm detectable in X , the NDD

AFA(X′) represents X ′.

The following proposition 5.12 will be useful to compute

in polynomial time the set FA(X ′) of a set X ′ ⊆ Nm with

a polynomial time membership problem, and detectable in a

set X ⊆ Nm represented by a NDD A.

Proposition 5.12 Let X ⊆ Nm represented by a NDD A

and let X ′ ⊆ Nm detectable in X . In polynomial time, the

computation of FA(X ′) can be reduced to the membership

problem for X ′.

Example 5.13 Let X = {x ∈ N2; (x[1] = 2.x[2]) ∨
(x[2] = 2.x[1])} be represented by the NDD A given in

figure 4. The sets X1 = {x ∈ N2; (x[1] = 2.x[2])} and

X2 = {x ∈ N2; (x[2] = 2.x[1])} are both detectable in X .

We have FA(X1) = {q3, q0} and FA(X2) = {q4, q0}.

5.3. Terminal components

The strongly connected components of a NDD play an

important role in this paper. We call a terminal component

T of a NDD A, a strongly connected component reachable

from the initial state, that contains at least one final state

and such that any final state q′ reachable from T is in T .

Intuitively, a strongly connected component T is terminal

if it is farthest from the initial state. The set of terminal

components of A is denoted by T (A).

Proposition 5.14 Let A be a NDD. For any terminal com-

ponent T of A, there exists a unique vector space VT (A)
such that saff(ρ(L(AF ′

q))) is an affine space whose the di-

rection is equal to VT (A), for any state q ∈ T and for any

semi-eye F ′ such that T remains a terminal component of

A
F ′

.

Proposition 5.14 associates to any terminal component

T of a NDD A, a vector space VT (A). Moreover, as for

any q ∈ T ∩ F , we have aff(ρ(L(Aq))) = VT (A), we

deduce from [19] that we can compute in polynomial time

this vector space. For any vector space V , we denote by

TV (A) the set of terminal components T ∈ T (A) such that

VT (A) = V .

Example 5.15 Let us consider the NDD A given in fig-

ure 4 that represents X = {x ∈ N2; (x[1] = 2.x[2]) ∨
(x[2] = 2.x[1])}. The set T (A) contains two terminal

components T (A) = {T0, T1} where T0 = {q2, q4} and

T1 = {q1, q3}. Moreover, we have VT0
(A) = Q.(1, 2)

and VT1
(A) = Q.(2, 1). In particular we have

−→
saff(X) =

⋃

T∈T (A) VT (A).

Example 5.16 Let us consider the NDD A given in figure

5 that represents X = {x ∈ N2; x[2] ≥ 4.x[1]}. The

set T (A) contains one terminal components T (A) = {Q}.

Moreover, we have VQ(A) = Q2. In particular, we also

have
−→
saff(X) =

⋃

T∈T (A) VT (A).

6. Presburger-definable sets

A subset X ⊆ Zm is said Presburger-definable if it can

be defined by a formula in the first order theory 〈Z, +,≤〉.
Naturally, any Presburger-definable set is r-definable and

there exists some r-definable sets that are not Presburger-

definable. In this section, we provide a “decomposition the-

orem” for the Presburger-definable sets that provides a new

geometrical point of view of Presburger-definable sets.

Remark 6.1 A linear set X of Zm is a set of the from X =
b +

∑

p∈P N.p where b ∈ Zm is called the basis and P ⊆

Zm is a finite subset of Zm called the set of periods. A

semi-linear set of Zm is a finite union of linear sets of Zm.

Recall that a set X is Presburger-definable if and only if it

is semi-linear [13].

Example 6.2 The Presburger-definable set X = {x ∈
N2; x[2] ≥ 4.x[1]} is represented in figure 6.

Given a vector space V and a subset X ⊆ Qm, let us

consider the following set XV ⊆ X :

XV = X ∩

⋃

A∈comp(saff(X))
−→
A=V

A

As XV is non-empty if and only if V is in the finite set

{
−→
A ; A ∈ comp(

−→
saff(X))}, we have a decomposition of X

into a finite union of XV . In [21], we proved that for any

vector space V , the set comp(saff(XV)) is a finite union of

non-empty affine spaces A such that
−→
A = V .

This decomposition of X is refined by the following the-

orem 6.3 when X ⊆ Zm is Presburger-definable and V is

an affine component of
−→
saff(X) (see example 3.7 for the

inclusion comp(
−→
saff(X)) ⊆ {

−→
A ; A ∈ comp(

−→
saff(X))}).

Theorem 6.3 (decomposition theorem) Let X ⊆ Zm be

a Presburger-definable set and V ∈ comp(
−→
saff(X)). There

exists a unique finite class MV (X) of V -modular spaces

such that there exists a sequence (CV,M)M∈MV (X) of V -

polyhedrons satisfying the following two assertions:

• Sequence (CV,M)M∈MV (X) is a “kind of partition” of

V : CV,M is non V -degenerate for any M ∈ MV (X)
whereas V \(

⋃

M∈MV (X) CV,M) is V -degenerate and

CV,M ∩ CV,M ′ is V -degenerate for any M 6= M ′ ∈
MV (X).

• For any V -modular space M ∈ MV (X), we have:

dim
(

(XV ∆M) ∩ (CV,M + V ⊥)
)

< dim(XV)

Moreover another sequence (C′
V,M)M∈MV (X) of V -

polyhedrons satisfies the previous two assertions if and only

if [CV,M]V = [C′
V,M]V for any M ∈ MV (X).

Recall that the V -boundary of a V -polyhedron is de-

fined “up to V -degenerate V -polyhedrons”. That means

if C1 and C2 are two V -polyhedrons such that [C1]V =
[C2]V then boundV (C1) = boundV (C2). Let X be a

Presburger-definable set and V be an affine component of
−→
saff(X). From the previous theorem 6.3 we deduce that
⋃

M∈MV (X) boundV (CV,M) only depends on X and V .

This semi-affine space is written boundV (X).

boundV (X) =
⋃

M∈MV (X)

boundV (CV,M)

Example 6.4 Let us consider the Presburger-definable set

X = {x ∈ N2; x[2] ≥ 4.x[1]} given in figure 6. We

have
−→
saff(X) = V where V = Q2 and XV = X . We

also have MV (X) = {∅, Z2}. Remark that the sequence of

V -polyhedrons (CV,M)M∈MV (X) given by CV,Z2 = {x ∈
Q2; x[1] ≥ 0 ∧ x[2] ≥ 4.x[1]} and CV,∅ = Q2\CV,Z2 sat-

isfies the decomposition theorem. From boundV (CV,Z2) =
boundV (CV,∅) = Q.(0, 1) ∪ Q.(1, 4), we deduce that

boundV (X) = Q.(1, 0) ∪ Q.(1, 4).

7. Polynomial time decomposition

In this section, we show that
−→
saff(X) and boundV (X)

are computable in polynomial time from a NDD that

represents a Presburger-definable set X .

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

Xq0
= X

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

Xq2
= γ−1

(1,0)(X)
b

b

b

b

b

b

b

b

b

b

b

b

b

Z = Xq0
∆Xq2

−→
saff(Z)

Figure 6. X = {x ∈ N2; x[2] ≥ 4.x[1]}

In order to illustrate the computation of
−→
saff(X) from a

NDD representing a Presburger-definable set X (see also

example 5.15 and 5.16), assume that X is a non-empty

set represented by a NDD A. As any terminal compo-

nent T is reachable from q0, there exists at least one path

q0
σ
−→ q with q ∈ T . From proposition 5.5, we deduce

that Xq = γ−1
σ (X) and in particular Γσ(Xq) ⊆ X where

Γσ : Qm → Qm is the affine function that extends γσ

by Γσ(x) = r|σ|.x + ρ(σ). From this inclusion, a simple

lemma shows that
−→
saff(Xq) ⊆

−→
saff(X). Now, just recall

that VT (A) =
−→
saff(Xq). Therefore, we have proved the in-

clusion
⋃

T∈T (A) VT (A) ⊆
−→
saff(X). Even if the converse

inclusion is not true in general, the following theorem shows

that it holds for any Presburger-definable NDD. In particu-

lar we deduce that
−→
saff(X) can be efficiently computed in

polynomial time.

Theorem 7.1 Let X be a Presburger-definable set repre-

sented by a NDD A. We have the following equality:

−→
saff(X) =

⋃

T∈T (A)

VT (A)

We illustrate the computation of boundV (X) from the

NDD A given in figure 5 that represents the set X =
{x ∈ N2; x[2] ≥ 4.x[1]} given in figure 6. Remark

that
−→
saff(X) = V = Q2, and boundV (X) = Q.(1, 0) ∪

Q.(1, 4). Proposition 5.5, shows that Xq2
= {x ∈

Nm; x[2] ≥ 4.x[1] + 2} also given in figure 6. Remark

that
−→
saff(Xq0

∆Xq2
) = Q.(1, 4) which provides the affine

component Q.(1, 4) of boundV (X).

q0 q⊥

Σrm ∩ (Q.ej)
⊥

Σrm

Σrm\(Q.ej)
⊥

Figure 7. A NDD representing Nm ∩ (Q.ej)
⊥

This technique is generalized to any Presburger-

definable set X by the following theorem that proves in

particular that we can efficiently compute boundV (X) in

polynomial time from a NDD that represents X (see also

figure 7).

Theorem 7.2 Let X be a Presburger-definable set repre-

sented by a NDD A, and let V be an affine component of
−→
saff(X).

• Consider IV (A), the set of states (q1, q2) ∈ T × T

where T ∈ TV (A) and
−→
saff(Xq1

∆Xq2
) is strictly in-

cluded in V .

• Consider JV (A), the set of j ∈ {1, . . . , m} such

that V ∩ (Q.ej)
⊥ is strictly included in V and such

that there exists q ∈ F ∩ T where T ∈ TV (A) and
−→
saff(Xq ∩ (Q.ej)

⊥) = V ∩ (Q.ej)
⊥.

We have the following equality:

boundV (X) =
⋃

(q1,q2)∈IV (A)

−→
saff(Xq1

∆Xq2
)

∪
⋃

j∈JV (A)

(V ∩ (Q.ej)
⊥)

8. Presburger synthesis

In this last section, we prove that we can decide in poly-

nomial time if a NDD A represents a Presburger-definable

set X . Moreover, in this case, we prove that we can

compute in polynomial time a Presburger formula φ that

defines X .

We only sketch the proof of this result. Assume that a

Presburger-definable set X is represented by a NDD A. We

have proved that comp(
−→
saff(X)) is computable in polyno-

mial time and for any vector space V in this set, boundV (X)
is also computable in polynomial time. In technical report

[21], we prove that we can also compute in polynomial time

a sequence (CV,M)M∈MV (X) of V -polyhedrons satisfying

decomposition theorem.

Remark that from decomposition theorem, we deduce

the following corollary:

Corollary 8.1 Let X ⊆ Nm be a non-empty Presburger-

definable set and (CV,M)M∈MV (X) be a sequence of V -

polyhedrons satisfying decomposition theorem. We have

dim(X ′) < dim(X) where X ′ is given by:

X ′ = X∆

⋃

V ∈comp(
−−→
saff(X))

M∈MV (X)

(M ∩ (CV,M + V ⊥))

In technical report [21], we prove that we can choose

(CV,M)M∈MV (X) correctly such that all the sets M ∩

(CV,M + V ⊥) are detectable in X . That means X ′ is de-

tectable in X and in particular, by modifying the set of final

states of the NDD A, we obtain a NDD that represents X ′

with exactly the same size.

As dim(X ′) < dim(X), an induction over the integral

dimension provides the proof of the following theorem.

Theorem 8.2 We can decide in polynomial time if a NDD

A represents a Presburger-definable set X . Moreover, in

this case, we can compute in polynomial time a Presburger

formula φ that defines X .

Remark 8.3 Tools that manipulate NDD, represent the

transition relation δ : Q × Σrm → Q by a BDD [6] in

order to avoid an exponential blow up due to the expo-

nential size of Σrm . Following [19], we deduce that all

the results proved in this paper can be extended in poly-

nomial time to this representation expect a technical one

(see technical report [21]). In particular, we deduce that

we can decide in non-deterministic polynomial time (non-

deterministic polynomial time in the dimension m and poly-

nomial time in the number of states |Q|) if such a NDD rep-

resents a Presburger-definable set. Moreover, in this case,

we can compute in polynomial time a Presburger formula

that defines the same set. We are not convinced that the

problem of deciding if such a NDD represents a Presburger-

definable set, can be done in polynomial time. Nevertheless,

the problem remains open.

Remark 8.4 Our decision procedure can be used in order

to decide in exponential time if a most significant digit first

NDD A represents a Presburger-definable set X (a polyno-

mial time procedure remains an open problem). In fact, by

“flipping” the “direction” of the transitions and by deter-

mining the resulting automaton, we obtain a least signifi-

cant digit first NDD Ā that represents X . Even if from a

theoretical point of view, an exponential blow up can ap-

pear, in practical examples, it is not the case (see [14] for

the duality least/most significant digit first).

Remark 8.5 Our algorithms should be efficient on NDD

with a large set of states. Assume that the dimension m ≥ 1
is fixed. Recall that in [19], we proved that aff(X) is com-

putable in linear time from a NDD that represents X . In

particular
−→
saff(X) is also computable in linear time. More-

over, even if theorem 7.2 seems to provide a O(|Q|4) time

complexity algorithm for computing boundV (X), we can

just compute only one NDD for each T ∈ TV (A) whose the

set of states is T ×T . Therefore boundV (X) is computable

in quadratic time. The exact complexity of our criterion will

be detailed in a revue version of the paper.

9. Conclusion and future work

We have described the precise structure of a NDD that

represents a Presburger-definable set. We are currently

working on the design of new efficient symbolic represen-

tations for Presburger-definable sets. In particular, we are

interested in studying hybrid representations that use both

NDD and constraint formulas. This is work in progress.

Acknowledgment: We thank Pierre McKenzie for his sup-

port and for his interesting remarks on so many versions of

this paper.

References

[1] S. Bardin, A. Finkel, and J. Leroux. Faster acceleration

of counter automata. In Proc. 10th Int. Conf. Tools and

Algorithms for the Construction and Analysis of Systems

(TACAS’2004) Barcelona, Spain, Mar. 2004, volume 2988

of Lecture Notes in Computer Science, pages 576–590.

Springer, 2004.
[2] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast

Acceleration of Symbolic Transition systems. In Proc. 15th

Int. Conf. Computer Aided Verification (CAV’2003), Boul-

der, CO, USA, July 2003, volume 2725 of Lecture Notes in

Computer Science, pages 118–121. Springer, 2003.
[3] L. Berman. Precise bounds for Presburger arithmetic and the

reals with addition: Preliminary report. In Proc. 18th IEEE

Symp. Foundations of Computer Science (FOCS’77), Prov-

idence, RI, USA, Oct.-Nov. 1977, pages 95–99, Providence,

Rhode Island, 31 Oct.–2 Nov. 1977. IEEE.
[4] A. Boudet and H. Comon. Diophantine equations, Pres-

burger arithmetic and finite automata. In Proc. 21st Int.

Coll. on Trees in Algebra and Programming (CAAP’96),

Linköping, Sweden, Apr. 1996, volume 1059 of Lecture

Notes in Computer Science, pages 30–43. Springer, 1996.

[5] V. Bruyère, G. Hansel, C. Michaux, and R. Villemaire.

Logic and p-recognizable sets of integers. Bull. Belg. Math.

Soc., 1(2):191–238, Mar. 1994.

[6] R. E. Bryant. Symbolic boolean manipulation with ordered

binary-decision diagrams. ACM Comput. Surv., 24(3):293–

318, 1992.

[7] T. Bultan, R. Gerber, and W. Pugh. Model-checking con-

current systems with unbounded integer variables: symbolic

representations, approximations, and experimental results.

ACM Transactions on Programming Languages and Sys-

tems, 21(4):747–789, 1999.

[8] A. Cobham. On the base-dependance of sets of numbers rec-

ognizable by finite automata. Mathematical Systems Theory,

3:186–192, 1969.

[9] FAST homepage. http://www.lsv.ens-cachan.

fr/fast/.

[10] L. Fribourg. Petri nets, flat languages and linear arith-

metic. Invited lecture. In M. Alpuente, editor, Proc.

9th Int. Workshop. on Functional and Logic Programming

(WFLP’2000), Benicassim, Spain, Sept. 2000, pages 344–

365, 2000. Proceedings published as Ref. 2000.2039, Uni-

versidad Politécnica de Valencia, Spain.

[11] L. Fribourg and H. Olsén. Proving safety properties of infi-

nite state systems by compilation into Presburger arithmetic.

In Proc. 8th Int. Conf. Concurrency Theory (CONCUR’97),

Warsaw, Poland, Jul. 1997, volume 1243 of Lecture Notes

in Computer Science, pages 213–227. Springer, 1997.

[12] V. Ganesh, S. Berezin, and D. L. Dill. Deciding presburger

arithmetic by model checking and comparisons with other

methods. In Proc. 4th Int. Conf. Formal Methods in Com-

puter Aided Design (FMCAD’02), Portland, OR, USA, nov.

2002, volume 2517 of Lecture Notes in Computer Science,

pages 171–186. Springer, 2002.

[13] S. Ginsburg and E. H. Spanier. Semigroups, Presburger for-

mulas and languages. Pacific J. Math., 16(2):285–296, 1966.

[14] F. Klaedtke. On the automata size for presburger arithmetic.

In Proc. 19th Annual IEEE Symposium on Logic in Com-

puter Science (LICS’04), Turku, Finland July 2004, pages

110–119. IEEE Comp. Soc. Press, 2004.

[15] N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA im-

plementation secrets. Int. J. of Foundations Computer Sci-

ence, 13(4):571–586, 2002.

[16] LASH homepage. http://www.montefiore.ulg.

ac.be/˜boigelot/research/lash/.

[17] L. Latour. From automata to formulas: Convex integer poly-

hedra. In Proc. 19th Annual IEEE Symposium on Logic

in Computer Science (LICS’04), Turku, Finland July 2004,

pages 120–129. IEEE Comp. Soc. Press, 2004.

[18] J. Leroux. Algorithmique de la vérification des systèmes à

compteurs. Approximation et accélération. Implémentation

de l’outil Fast. PhD thesis, Ecole Normale Supérieure de

Cachan, Laboratoire Spécification et Vérification. CNRS

UMR 8643, décembre 2003.

[19] J. Leroux. The affine hull of a binary automaton is com-

putable in polynomial time. In Proc. 5th Int. Workshop on

Verification of Infinite State Systems (INFINITY 2003), Mar-

seille, France, Sep. 2003, volume 98 of Electronic Notes in

Theor. Comp. Sci., pages 89–104. Elsevier Science, 2004.

[20] J. Leroux. Disjunctive invariants for numerical systems. In

Proc. 2nd Int. Symp. Automated Technology for Verification

and Analysis (ATVA 2004), Taipei, Taiwan, Nov. 2004, vol-

ume 3299 of Lecture Notes in Computer Science, pages 99–

107. Springer, 2004.

[21] J. Leroux. A polynomial time presburger criterion and

synthesis for number decision diagrams. Technical Re-

port 1251, Département d’Informatique et de Recherche

Opérationnelle. Faculté des arts et des sciences. Université

de Montréal. Montréal, Quebec, Canada, september 2004.

[22] D. Lugiez. From automata to semilinear sets: a solution

for polyhedra and even more general sets. In Proc. 9th.

Int. Conf. on Implementation and Application of Automata

(CIAA’04), Queen’s University, Kingston, Ontario, Canada,

Jul. 2004, volume 3317 of Lecture Notes in Computer Sci-

ence, pages 321–322. Springer, 2004.

[23] A. Muchnik. Definable criterion for definability in pres-

burger arithmetic and its applications. (in russian), preprint,

Institute of new technologies, 1991.

[24] A. Muchnik. The definable criterion for definability in pres-

burger arithmetic and its applications. Theoretical Computer

Science, 290:1433–1444, 2003.

[25] OMEGA homepage. http://www.cs.umd.edu/

projects/omega/.

[26] M. Presburger. Uber die volstandigkeit eines gewissen sys-

tems der arithmetik ganzer zahlen, in welchem die addition

als einzige operation hervortritt. In C. R. 1er congres des

Mathematiciens des pays slaves, Varsovie, pages 92–101,

1929.

[27] T. Rybina and A. Voronkov. Brain: Backward reachabil-

ity analysis with integers. In Proc. 9th Int. Conf. Algebraic

Methodology and Software Technology (AMAST’2002),

Saint-Gilles-les-Bains, Reunion Island, France, Sep. 2002,

volume 2422 of Lecture Notes in Computer Science, pages

489–494. Springer, 2002.

[28] A. Schrijver. Theory of Linear and Integer Programming.

John Wiley and Sons, New York, 1987.

[29] A. Semenov. Presburgerness of predicates regular in two

number systems. Siberian Mathematical Journal, 18:289–

299, 1977.

[30] P. Wolper and B. Boigelot. An automata-theoretic approach

to Presburger arithmetic constraints. In Proc. 2nd Int. Symp.

Static Analysis (SAS’95), Glasgow, UK, Sep. 1995, volume

983 of Lecture Notes in Computer Science, pages 21–32.

Springer, 1995.

[31] P. Wolper and B. Boigelot. On the construction of automata

from linear arithmetic constraints. In Proc. 6th Int. Conf.

Tools and Algorithms for the Construction and Analysis of

Systems (TACAS’2000), Berlin, Germany, Mar.-Apr. 2000,

volume 1785 of Lecture Notes in Computer Science, pages

1–19. Springer, 2000.

