
Software Tools for Te
hnology Transfer manus
ript No.

(will be inserted by the editor)

FAST: A

eleration from theory to pra
ti
e

⋆

Sébastien Bardin

1
, Alain Finkel

2
, Jér�me Leroux

3
, Laure Petru

i

4

1
LSL (LIST, CEA), Sa
lay

e-mail: sebastien.bardin�
ea.fr

2
LSV (UMR CNRS 8643, ENS de Ca
han), Ca
han

e-mail: finkel�lsv.ens-
a
han.fr

3
LaBRI (UMR CNRS 5800, ENSEIRB, Université Bordeaux-1), Bordeaux

e-mail: leroux�labri.fr

4
LIPN (UMR CNRS 7030, Université Paris-13), Villetaneuse

e-mail: laure.petru

i�lipn.univ-paris13.fr

The date of re
eipt and a

eptan
e will be inserted by the editor

Abstra
t. Fast is a tool for the analysis of systems ma-

nipulating unbounded integer variables. We 
he
k safety

properties by 
omputing the rea
hability set of the sys-

tem under study. Even if this rea
hability set is not ne
-

essarily re
ursive, we use innovative te
hniques, namely

symboli
 representation, a

eleration and 
ir
uit sele
-

tion, to in
rease 
onvergen
e. Fast has proved to per-

form very well on 
ase studies. This paper des
ribes

the tool, from the underlying theory to the ar
hite
ture


hoi
es. Finally, Fast 
apabilities are 
ompared with

those of other tools. A range of 
ase studies from the

literature is investigated.

Keywords: 
ounter systems, in�nite rea
hability set,

symboli
 representation, a

eleration

1 Introdu
tion

Automati
 veri�
ation of rea
tive systems is a major

�eld of resear
h. A popular way of modeling su
h sys-

tems is by means of 
on
urrent automata with shared

variables. The automata represent the 
ontrol stru
ture

of the system, while variables en
ode data. Many 
lasses

of su
h extended automata have been studied, 
onsider-

ing variables ranging over integers (
ounters), real num-

bers (time), words (queues, sta
ks) and so on.

The semanti
s of su
h an extended automaton is given

by a transition system (C,−→), de�ned by a set of 
on�g-

urations C and a transition relation −→. A 
on�guration

c ∈ C is a tuple of 
ontrol lo
ations (one for ea
h 
om-

ponent) and a valuation for ea
h variable of the system.

⋆
This paper is mainly based on results presented at CAV 2003,

TACAS 2004 and ATVA 2005.

The transition relation −→ is a binary relation over the

set of 
on�gurations. A 
on�guration c′ is rea
hable from

a 
on�guration c if and only if (c, c′) ∈−→∗
, where −→∗

de-

notes the re�exive and transitive 
losure of −→. The set

of 
on�gurations rea
hable from the 
on�guration c0 is


alled the rea
hability set from c0.

Safety properties are expressed in terms of �safe rea
h-

able 
on�gurations�. They are the most 
ommonly en-


ountered properties in pra
ti
e, and allow spe
i�
ation

of important properties su
h as the absen
e of deadlo
k,


apa
ity over�ow and division by zero.

The 
lass of 
ounter systems, where variables range

over integers, appears to be interesting. From a pra
ti-


al point of view, these systems allow the modeling of,

for example, 
ommuni
ation proto
ols [18℄, multi-thread

programs or programs with pointers [8℄. From a theoret-

i
al view, many well-known 
lasses appear to be en
om-

passed by 
ounter systems, like Minsky ma
hines, Petri

nets extended with reset/ inhibitor/ transfer ar
s [32,

39℄, reversal-bounded 
ounter ma
hines [47℄ and broad-


ast proto
ols [33,34℄.

The 
ounterpart of the expressiveness of 
ounter sys-

tems is that only two 
ounters with in
rement, de
re-

ment and test-to-zero 
an simulate a Turing ma
hine.

Then 
he
king even basi
 safety properties of 
ounter

systems is unde
idable. Many works have been 
ondu
ted

on identifying de
idable sub
lasses, like Petri nets [60℄

and reversal-bounded 
ounter ma
hines [46,47℄. How-

ever few of these results have been implemented, mainly

for two reasons. First sin
e ea
h result applies for a re-

stri
ted sub
lass, there is no generi
 method for a large


lass of 
ounter systems. Se
ond, these algorithms are

often ine�
ient in pra
ti
e.
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1.1 The tool Fast

In this paper, we present the tool Fast [5,9℄, designed to


he
k safety properties on 
ounter systems. We made the


hoi
e to 
onsider a very large sub
lass of 
ounter sys-

tems, namely linear 
ounter systems, for whi
h 
he
king

safety properties is unde
idable.

The safety properties are expressed in terms of Pres-

burger 
onstraints over 
ounters. They stri
tly in
lude

the usual rea
hability properties, expressed in terms of


ontrol lo
ation or upward 
losed / 
onvex sets of 
on-

�gurations.

The tool Fast has four main advantages:

Sin
e linear 
ounter systems and Presburger 
onstraints

are very expressive, Fast 
an be applied to a large

spe
trum of appli
ations and the tool is not tied to

a parti
ular spe
i�
 
ase-study.

Despite the inherent theoreti
al limitations, a powerful

engine based on re
ently developed te
hniques (a

el-

eration, �attening, redu
tion) allows Fast to 
he
k

the 
orre
tness of the system in most pra
ti
al 
ases.

Fast design is fully based on a 
lear theoreti
al frame-

work (�at a

eleration). Abilities and limits of the

tool are 
learly identi�ed: Fast is 
omplete for the


lass of �attable systems [7℄. Moreover sin
e many

de
idable sub
lasses of 
ounter systems are �attable,

Fast provides a uni�ed veri�
ation algorithm for all

these 
lasses [56,57℄.

Finally, in 
ase the automati
 veri�
ation fails, the user


an guide the tool using a s
ript language. We think

that this is an important feature sin
e termination


annot be guaranteed.

1.2 Theoreti
al foundations

Symboli
 model 
he
king. Fast follows the model 
he
k-

ing approa
h [13,26℄, based on the exhaustive explo-

ration of the rea
hability set. However, sin
e one manip-

ulates potentially in�nite sets of 
on�gurations, 
alled

regions, the model 
he
king must be �symboli
�. A sym-

boli
 representation must support the following opera-

tions: (1) post- and/or pre-image 
omputation, (2) union

to 
olle
t all rea
hable 
on�gurations, (3) in
lusion to

test for �xpoint. The most popular symboli
 represen-

tations are based on regular languages: these are quite

expressive and automata-theoreti
al data stru
tures pro-

vide well-known and e�
ient algorithms performing the

previous operations. With these ingredients, it be
omes

possible to laun
h a �xpoint 
omputation for forward

or ba
kward rea
hability sets (see for example [51℄), as

exempli�ed in pro
edure 1.

A

eleration. In pra
ti
e, an iterative symboli
 rea
ha-

bility set 
omputation similar to the one of pro
edure 1

will surely fail. A solution to help 
onvergen
e is to use

pro
edure rea
h1(x0)
input: symboli
 
on�guration x0.

1: x← x0

2: while post(x) 6⊑ x do

3: x← post(x) ⊔ x

4: end while

5: return x

Pro
edure 1: standard symboli
 pro
edure

a

eleration te
hniques. A

eleration 
onsists of 
omput-

ing in one step the e�e
t of the transitive 
losure of a

transition or a sequen
e of transitions.

First ideas of a

eleration 
an be found in the 
over-

ing tree of Petri nets by Karp and Miller in 1969 [49℄,

extended by Finkel to well-stru
tured transitions sys-

tems [36℄. The �rst paper on the a

eleration of 
ounter

systems is probably due to Boigelot and Wolper in [21℄,


onsidering fun
tions with in
rement/ de
rement/ reset

and 
onvex guards. Sin
e then, lots of work has been

a
hieved in this area, for example [2,14,41,42,50℄. Re-

sults of [20,37,66℄ extend those of Wolper and Boigelot

to linear fun
tions with Presburger-de�nable guards.

Flat a

eleration framework. An e�
ient a

eleration

algorithm is not su�
ient to 
ompute the rea
hability

set. The question is how to �nd out the 
ir
uits (se-

quen
es of transitions) of the system, whose a

eleration

will lead to a su

essful 
omputation of the rea
hability

set. This issue was not 
learly treated until we intro-

du
ed the �at a

eleration framework [7℄. We proposed

the notion of �attening, and showed that �at a

eler-

ation 
omputes the rea
hability set if and only if the

system is �attable. Moreover, we designed a 
omplete

heuristi
 for �attable systems, and generi
 optimizations


alled redu
tions. The framework is arti
ulated around

four key points: (1) the system under 
onsideration, (2)

the symboli
 representation, (3) the a

eleration algo-

rithm and (4) a heuristi
 to sele
t 
ir
uits to be a

eler-

ated.

The tool Fast follows stri
tly the �at a

eleration

framework. The systems analyzed (linear 
ounter sys-

tems with �nite monoid) and the 
orresponding a

el-

eration algorithms 
an be found in [37,66℄. The sym-

boli
 representation is based upon the automata repre-

sentation of semi-linear sets (see [23,67℄). The sele
tion

heuristi
 is the one des
ribed in [7℄ with the redu
tion

presented in [37℄.

Even though the rea
hability set of a linear 
ounter

system is not Presburger de�nable in general, in pra
-

ti
e the systems manipulated are regular enough to have

a Presburger de�nable rea
hability set. The te
hniques

presented throughout the paper allow for model 
he
king

many 
ounter systems (more than forty tests).

Moreover, Leroux and Sutre have shown in [56,57℄

that Fast is guaranteed to terminate for many sub-



Sébastien Bardin et al.: FAST: A

eleration from theory to pra
ti
e 3


lasses of 
ounter systems: 2-
ounters VASS, reversal-

bounded 
ounter ma
hines, lossy VASS, BPP, Cy
li


Petri nets and other sub
lasses.

1.3 Other tools for 
ounter systems

The following approa
hes and tools have been developed

to 
he
k 
orre
tness of 
ounter systems.

Rea
hability set 
omputation. ToolsAlv [25,68℄,Lash [55℄

and TReX [3℄ implement symboli
 methods to 
ompute

the forward rea
hability set of 
ounter systems.Alv pro-

vides two di�erent symboli
 representations for integer

ve
tors: Presburger formula or automata as in Fast. A
-


eleration is available for the formula-based representa-

tion [50℄, but not for the automata-based representation.

The tool is mostly used in ba
kward 
omputation or in

approximated forward 
omputation [12℄. Lash [55℄ foun-

dations are 
lose to those of Fast, with similar symboli


representations and a

eleration algorithms. The main

di�eren
e is that Lash does not implement any 
ir
uit

sear
h and the user has to provide 
ir
uits to the tool.

TReX [3℄ follows the same framework but uses rather

di�erent te
hnologies. A 
omparison of Alv, Fast, Lash

and TReX is presented in se
tion 8.

Co-rea
hability set 
omputation. One of the most inter-

esting results for 
ounter systems veri�
ation is the 
om-

putability of the 
o-rea
hability set of monotoni
 VASS:

monotoni
 VASS is a large sub
lass, e�
ient symboli


representations have been developed and interesting 
ase

studies have been 
ondu
ted. We 
an 
ite the work on


overing sharing trees of Delzanno, Raskin and Van Be-

gin [30℄ and the tool brain by Voronkov and Rybina [64℄.

These approa
hes are more spe
i�
 than the one of Fast:


omputation is ba
kward only

1

, properties are redu
ed

to upward-
losed sets and systems are monotoni
. For

example 
ase-studies of se
tion 9 and se
tion 10 
ould

not have been handled with these tools.

Rea
hability set approximation. Finally, some approa
hes

relax the exa
tness of 
omputation to ensure 
omputa-

tion termination or at least simpler 
omputational steps.

However the superset obtained in the end may not be

tight enough to de
ide the property. We 
an 
ite the


lassi
 tool Hyte
h [1℄, as well as the abstra
t-
he
k

and re�ne te
hnique of Raskin et al. [44℄ to 
ompute

iteratively 
overing trees of monotoni
 Petri nets.

1.4 Contribution

This paper provides both an overview of the main re-

sults obtained on Fast and on a

eleration of 
ounter

systems [4,5,7,9,10,29,37,56,57℄ as well as some origi-

nal 
ontributions: an up-to-date des
ription of Fast, an

1

Fast 
an also be used for ba
kward rea
hability 
omputations.

in-depth experimental 
omparison with similar tools, the

veri�
ation of the TTP proto
ol (a short des
ription of

this work was proposed in [4℄) and the veri�
ation of the

Capa
ity Ex
hange Signaling proto
ol.

1.5 Outline

The sequel of the paper is stru
tured as follows. Ea
h

point of the Fast framework is presented in se
tions 2

to 5: 
ounter systems (se
tion 2), symboli
 representa-

tion (se
tion 3), a

eleration (se
tion 4) and sele
tion

heuristi
 (se
tion 5). After this overview of the theoret-

i
al foundations, se
tion 6 presents the tool Fast. Ex-

periments are presented in se
tion 7, 
omparisons with

tools Alv, Lash and TReX 
an be found in se
tion 8

and two 
ase-studies are developed in se
tions 9 and 10.

2 Presburger Arithmeti
 And Counter Systems

2.1 Sets

Given two sets E and F , we denote by E∪F , E∩F , E\F
and E×F , the union, the interse
tion, the di�eren
e and

the Cartesian produ
t of E and F . The set Ei, i > 0, is
de�ned by E1 = E and En+1 = E×En

. We write E ⊆ F

if E is a subset of F . The empty set is denoted ∅. Given
two sets E, X su
h that E ⊆ X , the 
omplement of E

(in X) is denoted by Ē and is de�ned as Ē = X\E. The


ardinal of a �nite set X is written |X |.

2.2 Relations

A relation R between E and F is a subset R ⊆ E ×
F . We write xR x′

whenever (x, x′) ∈ R. The inverse

relation of R, written R−1 ⊆ F×E, is de�ned by x′R−1x

if and only if xRx′
. The image of x ∈ E by R is the

set R(x) ⊆ F de�ned by R(x) = {x′ ∈ F |xRx′}. The
de�nition is extended to a set X ⊆ E by R(X) = {x′ ∈
F |∃x ∈ X.xRx′}. Given two relations R1 ⊆ E × F and

R2 ⊆ F × G, the 
omposition of R1 and R2, written

R1 • R2 ⊆ E × G, is de�ned by: x(R1 • R2)x
′′
if xR1x

′

and x′R2x
′′
for some x′ ∈ F .

A binary relation R on E is a relation between E and

itself. The identity relation on E is the binary relation

IdE = {(x, x)| x ∈ E}. For R on E, we denote by Ri

the relation de�ned indu
tively by: R0
is the identity

relation on E and Rn+1 = R • Rn
. The re�exive and

transitive 
losure of R, denoted R∗
, is then de�ned by

R∗ =
⋃

n≥0 Rn
.

2.3 Numbers and matri
es of numbers

Let Z (resp. N) denote the set of integers (resp. non-

negative integers). We denote by Mn(Z) (resp. Mn(N))
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q1 q2

x′ = x + 1 ∧ y′ = y /∗ a1 ∗/

x 6= y ∧ y′ = y + x ∧ x′ = x /∗ a2 ∗/

y′ = y + 2∧
x′ = x− 1
/∗ a3 ∗/

Fig. 1: A simple 
ounter system

the set of square matri
es of size n over Z (resp. N). The

identity matrix of size n is denoted 1n. The max-norm

of a matrix (resp. ve
tor), written ||·||∞, is the maximal

absolute value appearing in the matrix (resp. ve
tor).

2.4 Presburger arithmeti


Presburger arithmeti
 [63℄ is the �rst order additive the-

ory over the integers 〈Z,≤, +〉. Satis�ability and valid-

ity of Presburger arithmeti
 are both de
idable. A Pres-

burger formula is denoted by φ(−→x ) where

−→
x is a n-

dim ve
tor of free variables (

−→
x [i] is the i-th 
omponent

of

−→
x ). The set of ve
tors de�ned by su
h a formula

φ(−→x ), i.e, the set of ve
tors satisfying φ, is denoted byq
φ(−→x )

y
⊆ Z

n
. A set X ⊆ Z

n
is said to be Presburger-

de�nable if there exists a Presburger formula φ(−→x ) su
h
that X =

q
φ(−→x )

y
.

2.5 Counter systems

A 
ounter system is a �nite 
ontrol stru
ture (automa-

ton

2

) extended with m integer variables whose values


an be modi�ed by a
tions denoted by a Presburger for-

mula. Fig. 1 gives an example of a 
ounter system.

De�nition 1 (Counter system). Let m be a non-

negative integer. A m-dim 
ounter system S is a tuple

S = (Q, T, m), where Q is a �nite non empty set of lo
a-

tions, and T is a �nite set of transitions (q, φ, q′) where
q, q′ ∈ Q and φ(−→x ,−→x ′) is a Presburger formula over 2m

variables.

Given a transition t = (q, φ, q′) ∈ T , we de�ne the

fun
tions α, β and l by α(t) = q, β(t) = q′ and l(t) = φ.

Semanti
s. As previously mentioned, the semanti
s of a


ounter system is given by a transition system (CS ,
T
−→).

The set of 
on�gurations CS of a 
ounter system S is

Q×Z
m
. The transition relation

T
−→ is de�ned as follows.

The semanti
s of a transition t ∈ T is given by the re-

lation

t
−→ over CS de�ned by: (q,−→x )

t
−→ (q′,−→x ′) if q =

α(t), q′ = β(t) and (−→x ,−→x ′) ∈ Jl(t)K. This de�nition 
an

be extended to the set T ∗
of sequen
es of transitions. Let

us denote by ε the empty word. Then

ε
−→

def

= IdCS
and

t·π
−→

def

=
t

−→ •
π

−→. We also extend −→ to any language

2

In 
ase of multi-
omponent systems, we 
onsider the syn
hro-

nized produ
t automaton.

L ⊆ T ∗
by

L
−→

def

=
⋃

π∈L

π
−→. The de�nition of

T
−→ fol-

lows dire
tly. The relation

T∗

−→ is 
alled the rea
hability

relation.

Remark 1. The analysis of a 
ounter system with |Q|
lo
ations and m 
ounters 
an always be redu
ed to the

analysis of a system S′ = ({q′}, T ′, m+1) with only one

lo
ation and m + 1 variables, by en
oding the 
ontrol

stru
ture in a new 
ounter xQ.

Notation. Whenever S is impli
itly known, it is omitted

in the notation.

2.6 Rea
hability problems

For any X ⊆ C and any L ⊆ T ∗
, the set post(L, X) of


on�gurations rea
hable from X following sequen
es of

transitions in L is de�ned by post(L, X) = (
L
−→)(X) =

{x′ ∈ C| ∃x ∈ X ; (x, x′) ∈
L

−→}. We fo
us on two parti
-

ular sets: the set post(T, X) of all 
on�gurations rea
h-
able in one step from X , also denoted by post(X); and
the set post(T ∗, X) of all 
on�gurations rea
hable from
X (the rea
hability set of X), also denoted by post∗(X).

Given an initial set of 
on�gurations X0, 
he
king a

safety property P 
an be done by: (1) 
omputing post∗(X0),
(2) de
iding whether post∗(X0) ⊆ P holds or not. We

fo
us here on the rea
hability set 
omputation, whi
h is

the 
entral issue. Sin
e 
ounter systems generalize Min-

sky ma
hines (
ounters with in
rement, de
rement and

test-to-zero), their rea
hability sets are not re
ursive in

general. Then the best we 
an hope for are 
orre
t pro
e-

dures, with no theoreti
al guarantee of termination but

e�
ient on large sub
lasses and pra
ti
al 
ase-studies.

A symmetri
al approa
h is to 
ompute in a ba
kward

manner the 
o-rea
hability set pre∗(P̄ ) = (
L
−→)−1(P̄ ) and


he
k that X0∩pre∗(P̄ ) is empty. In the following we al-

ways 
onsider forward 
omputation, but our results 
an

be straightforwardly adapted to ba
kward 
omputation.

3 Automata-Based Symboli
 Representation

The symboli
 model 
he
king approa
h was �rst devel-

oped to verify large but still �nite-state systems. The

key idea is to manipulate sets of states dire
tly through

a 
on
ise symboli
 representation (su
h as BDDs) rather

than manipulate enumerations of 
on
rete states. The

approa
h naturally extends to in�nite state veri�
ation

using more 
omplex symboli
 representations, su
h as

automata.

In the 
ase of 
ounter systems, the 
lass of Presburger-

de�nable sets is naturally used as the symboli
 represen-

tation, sin
e: (1) the union of two Presburger-de�nable

sets is e�e
tively Presburger-de�nable, (2) assuming the



Sébastien Bardin et al.: FAST: A

eleration from theory to pra
ti
e 5

set X is Presburger-de�nable and S is a 
ounter system,

then postS(X) is Presburger-de�nable, (3) we 
an 
he
k

if X ⊆ X ′
for any two Presburger-de�nable sets X and

X ′
.

3.1 Number De
ision Diagrams (ndd)

The e�
ien
y of the algorithms based on Presburger de-

�nable sets depends strongly on the symboli
 represen-

tation used for manipulating these sets. Di�erent te
h-

niques [43℄ and tools have been developed for manipulat-

ing Presburger-de�nable sets : by working dire
tly on the

Presburger formulas [52℄ (implemented in Omega [62℄),

by using semi-linear sets [45℄ (implemented in Brain

[64℄), or by using Number De
ision Diagrams [23,65℄

(ndd, implemented in Fast [5℄, Lash [55℄ and Mona

[53℄).

The ndd representation is obtained by remarking that

given a basis r ≥ 2 of de
omposition, an integer, or more

generally an integer ve
tor in N
m
, 
an be de
omposed

into a word over the alphabet Σr,m = {0 . . . r − 1}m
.

Then a �regular� set of integer ve
tors 
an be de
om-

posed into a regular language L ⊆ Σ∗
r,m, and it 
an

be naturally represented by an automaton over Σr,m.

Su
h an automaton is 
alled a ndd [23,65℄. An example

is presented in �gure 2. For more detailed information

on ndd and automata-theoreti
 representations of Pres-

burger sets, the reader is referred to [23,65,67℄.

(1,1,0)

(0,0,1)

(1,1,1)
(0,1,0) (0,0,0)

(1,0,1)
(1,1,0)
(0,1,1)

(0,0,1)
(1,0,0)

(0,1,0)(1,0,0)(0,1,1)(1,0,1)(0,0,0) (1,1,1)

CARRY

BAD

Fig. 2: An automaton to represent {(x, y, z)|x + y = z}
(least digit �rst)

This approa
h is very fruitful sin
e set-theoreti
al

operations 
orrespond to well-known operations on au-

tomata (interse
tion for 
onjun
tion, 
omplementation

for negation, proje
tion for quanti�
ation and so on).

Presburger-de�nable sets and Presburger-de�nable rela-

tions (on 2m variables (−→x ,−→x ′)) are 
anoni
ally repre-

sented (uniqueness of the minimal form w.r.t. the num-

ber of nodes of the ndd). The post- and pre-operations for

arbitrary ndd-de�nable relations are also quite straight-

forward, sin
e ndd-de�nable sets are 
losed by image of

su
h relations.

Automata representations are well-suited for appli-


ations that require a lot of boolean manipulations su
h

as model-
he
king. For these appli
ations, ndd have two


ru
ial advantages over Presburger formula and semi-

linear sets. First, a minimization pro
edure for automata

provides a 
anoni
al representation for ndd-de�nable sets

(a set represented by a ndd). This means that the ndd

representing a given set only depends on this set and

not on the way it is 
omputed. On the other hand, Pres-

burger formulas and semi-linear sets la
k 
anoni
ity. As

a dire
t 
onsequen
e, a set that possesses a simple rep-

resentation 
ould unfortunately be represented in an un-

duly 
ompli
ated way. Se
ond, de
iding if a given ve
tor

of integers is in a given set 
an be performed in linear

time with ndd, while it is at least NP-hard [15,45℄ with

Presburger formula and semi-linear sets.

Remark 2. In pra
ti
e, in order to de
rease the number

of output transitions in the ndd, the basis r is set to 2
(binary de
omposition) and the alphabet {0, 1}m

is re-

du
ed to {0, 1} thanks to a serialization [67℄. This 
an be

done without any loss of expressivity sin
e Presburger-

de�nable sets are exa
tly the sets that 
an be represented

by ndd in any basis r of de
omposition. People interested

in the expressive power of ndd should 
onsult [24℄.

4 Rea
hability Computation For Flat Counter

Systems

Pro
edure 1 only terminates on bounded systems [7℄: any


on�guration x ∈ post∗(X) must be rea
hable from a


on�guration x0 ∈ X by a path x0
π
−→ x where |π| is

bounded independently of x and x0. In pra
ti
e systems

are rarely bounded. For example any linear 
ounter sys-

tem (S, X0) su
h that post∗(X0) is in�nite while X0 is �-

nite (e.g. a system with a 
ir
uit adding one to a 
ounter)

is not bounded. A notable ex
eption is the 
lass of mono-

toni
 Petri nets, 
onsidering ba
kward 
omputation from

upward-
losed sets of 
on�gurations.

Pro
edure 1 
an be improved by using an algorithm

post_star that 
omputes from a symboli
 representa-

tion of X and a regular language L ⊆ T ∗
, a symboli
 rep-

resentation of post(L, X). We are interested in in�nite

regular languages L, simple enough so that post(L, X)

an be e�e
tively 
omputed from any set X . Indeed, if

L is �nite, then post(L, X) 
an be 
omputed by pro-


edure 1 and post_star does not add any power to

pro
edure 1. On the other hand, post(L, X) 
annot be


omputed for an arbitrary L, sin
e post(T ∗, X) is equal
to the rea
hability set whi
h is not re
ursive. In the se-

quel, we 
onsider the spe
ial 
ase L = σ∗
where σ ∈ T ∗

.

It is easy to de�ne a �rst synta
ti
 restri
tion to


ounter systems su
h that the rea
hability set 
an be


omputed with an improved version of pro
edure 1 using

post(σ∗, X) for some 
y
les σ ∈ T ∗
. We 
all �at 
ounter
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system [27,38,40℄ a 
ounter system where, for ea
h lo-


ation q, there exists at most one elementary 
ir
uit in

the 
ontrol graph 
ontaining q (see �gure 3). Intuitively

a �at system has no nested loop. For example, to 
om-

pute the rea
hability set of the �at 
ounter system of

�gure 3, we �rst iterate t1, then �re t3 and �nally it-

erate t2. Note that su
h an algorithm (if it exists) goes

beyond the standard symboli
 pro
edure be
ause it 
an

dis
over the set of 
on�gurations that are not ne
essarily

rea
hable by paths of a bounded length.

t1: x ≥ 0 ∧ x
′ = x + 2 ∧ y

′ = y

t2: x
′ = x + 1 ∧ y

′ = y + 1

t3: x ≥ y ∧ x
′ = x ∧ y

′ = y

q1 q2

Fig. 3: A �at 
ounter system

4.1 Presburger linear fun
tions

The set post(σ∗, X) is not Presburger-de�nable in gen-

eral even if X is Presburger-de�nable. Indeed, this set


an be non-re
ursive sin
e the one-step rea
hability rela-

tion R of a Minsky ma
hine is Presburger-de�nable and


an be en
oded by a single loop t su
h that Jl(t)K = R.

Nevertheless, we say that a Presburger-de�nable binary

relation R ⊆ Z
n × Z

n

an be a

elerated if the binary

relation R∗
is Presburger-de�nable. In this se
tion, we

de�ne a sub
lass of Presburger-de�nable binary relations

R, both en
ompassing most of the usually used binary

relations R = Jl(σ)K and supporting the e�e
tive 
om-

putation of a Presburger formula en
oding R∗
.

De�nition 2 (Presburger linear fun
tion [37℄). A

Presburger linear fun
tion is a fun
tion f : Z
n → Z

n

su
h that there exists a tuple f̄ = (ϕ, M,−→v ), where
ϕ(−→x ) is a Presburger formula over n variables, M ∈
Mn(Z) is a square matrix and

−→
v ∈ Z

n
is a ve
tor, su
h

that f is de�ned over JϕK by f(−→x ) = M.−→x + −→
v .

Su
h a tuple f̄ = (ϕ, M,−→v ) is 
alled a Presburger linear

presentation of f . The formula ϕ is the guard of f̄ .

Note that the binary relation x′ = f(x) where f is

the Presburger linear fun
tion de�ned by f(x) = 2x

for any x is not a

elerable. In fa
t, the binary rela-

tion x′ ∈ f∗(x) is not Presburger-de�nable. We intro-

du
e the 
lass of Presburger linear presentations with

a �nite monoid to enfor
e the a

elerability property.

The monoid of a Presburger linear presentation f̄ =
(ϕ, M,−→v ) is the multipli
ative monoid M∗

of the ma-

trix M , i.e. M∗ = {1m, M, M2, . . . , Mn, . . .}.

Note that when M = Idm the Presburger presenta-

tion f̄ = (ϕ, M,−→v ) has a �nite monoid. In this 
ase, the

binary relation

−→
x′ ∈ f∗(−→x ) is en
oded by the following

Presburger formula:

∃k ≥ 0,
−→
x
′ = −→

x + k−→v ∧ ∀0 ≤ l < k, ϕ(−→x + l−→v ) (1)

In fa
t, the following theorem holds.

Theorem 1 ([20,37℄). The binary relation f∗
is ef-

fe
tively Presburger-de�nable for any Presburger linear

presentation f̄ with a �nite monoid.

Proof. (Sket
h) We redu
e the proof to the straightfor-

ward 
ase M = Idm. As f̄ = (ϕ, M,−→v ) has a �nite

monoid, there exists an integer n ≥ 0 and an integer

p ≥ 1 su
h that Mn+p = Mn
. For any integer k ≥ 0

we denote by (ϕk, Mk,−→v k) a presentation of fk
. Let us


onsider the Presburger linear fun
tion g de�ned by the

presentation ḡ = (fn(ϕn+p), Idm, (Mp − Idm)−→vn + −→
vp).

We observe that fp+n = g◦fn
and the following equality

provides the redu
tion:

f∗ =

n−1
⋃

r=0

f r

p−1
⋃

r=0

g∗ ◦ fn+r

⊓⊔

Remark 3. The �niteness of the monoid of a Presburger

linear presentation is de
idable in polynomial time [19℄.

We have proved that for a Presburger linear presenta-

tion f̄ = (ϕ, M,−→v ) with a �nite monoid, the transition

relation f∗

an be expressed as a Presburger formula.

Then 
omputing a ndd representing f∗

an be a
hieved.

An upper bound for the 
onstru
tion of this ndd is 3-

EXPTIME in the size of the ndd en
oding ϕ (denoted

|A(ϕ)|), the values
∣

∣

∣

∣

−→
v

∣

∣

∣

∣

∞
and ||M ||∞, and the number

of 
ounters m. The algorithm is implemented in Fast

and the upper bound has never been rea
hed on 
ase-

studies, ex
ept for the TTP system (with two faults),

for whi
h we have designed a spe
ial a

eleration algo-

rithm that takes into a

ount the parti
ular form of the

fun
tions f manipulated.

For some sub
lasses of Presburger linear fun
tions

f with a �nite monoid, a more e�
ient algorithm for


omputing f∗

an be expe
ted.

De�nition 3 (Convex translation [4℄). A 
onvex trans-

lation f is a Presburger linear fun
tion f = (ϕ, 1m,−→v )
where 1m is the identity matrix and ϕ is a 
onvex poly-

hedron.

Convex translations are a sub
lass of Presburger lin-

ear fun
tions with �nite monoid. The 
lass en
ompasses

for example Petri nets and Minsky ma
hines. A
tually,

we 
an use geometri
al properties of 
onvex sets to alle-

viate the transitive 
losure 
onstru
tion. In fa
t, in this


ase the Presburger formula (1) 
an be repla
ed by the

following one:

∃k ≥ 0,
−→
x
′ = −→

x +k−→v ∧ ϕ(−→x ) ∧ (k = 0∨ϕ(
−→
x
′−−→

v )) (2)
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parameter (magnitude) standard algo. 
onvex algo.

|A(ϕ)| (105
) 3-EXP quadrati


m (≤ 102
) 3-EXP EXP

||v||∞ (≤ 10) 3-EXP poly. in m

||M||∞ (≤ 10) 3-EXP = 1

Table 1. Complexity of the a

eleration algorithms (upper

bounds)

f taken from |A(f∗)| Time (se
.) Memory (MB)

proto
ol Standard/Convex Standard/Convex

Dekker, 22 var 1,536 0.7/0.8 4.6/4

Mesh32, 52 var 1,614 2.1/2.5 8/7.8

Mesh32, 52 var 16,766 10.3/7.4 31/13

TTP2, 19 var 26,409 5.6/2.3 17/18

Dekker, 22 var 41,950 18/10.2 52/30

TTP2, 19 var 190,986 50/9 400/140

TTP2, 19 var 380,332 ↑↑↑/34 ↑↑↑/534

Table 2. Pra
ti
al 
omparison of a

eleration algorithms

The relation f∗
is proved in [4℄ to be 
omputable in

time bounded by: |A(f∗)| ≤ |A(ϕ)|2.4.(4.m.
∣

∣

∣

∣

−→
v

∣

∣

∣

∣

∞
+

1)3.m
. The main reason for this improvement w.r.t. the-

orem 1 is that formula (2) has less quanti�ers than for-

mula (1), while ea
h quanti�er may introdu
e an expo-

nential blow-up in both time and spa
e. We 
all 
onvex

a

eleration the algorithm des
ribed in [4℄ to 
ompute

the transitive 
losure of 
onvex translations.

Remark 4. Sin
e the ndd representation is 
anoni
al, the

resulting ndd is the same as the one obtained with stan-

dard a

eleration. The di�eren
e is in the intermediate

ndd rea
hed during the 
omputation.

The 
omplexity of the 
onvex a

eleration is quadrati


in |A(ϕ)|, polynomial in

∣

∣

∣

∣

−→
v

∣

∣

∣

∣

∞
and exponential in the

number of 
ounters m. This is a major improvement


ompared to the standard a

eleration algorithm, espe-


ially when 
onsidering this parameter 
an take values

greater than 105
. Table 1 re
alls the upper bounds for

ea
h a

eleration algorithm. These results are proved

in [4℄. Table 1 also provides the typi
al orders of magni-

tude of ea
h parameter, based on our experiments on a

set of some 40 
ounter systems taken from the literature.

See se
tion 7 for more details about the experiments.

In pra
ti
e, 
onvex a

eleration allows to 
ompute

some f∗
that 
annot be 
omputed by the standard a

el-

eration algorithm (see [4℄ and se
tion 9). Table 2 shows

a 
omparison of both algorithms on di�erent transitions.

The 
onvex algorithm performs better (in both time and

spa
e) than the standard algorithm as soon as the result-

ing automaton (of the 
omputation) has approximately

10, 000 nodes. When |A(f∗)| ≥ 100, 000 nodes, the 
on-

vex algorithm is 
learly more e�
ient, and it 
an be the


ase that it su

eeds in 
omputing A(f∗) while the stan-
dard algorithm fails.

4.2 Linear 
ounter systems with a �nite monoid

De�nition 4 (Linear 
ounter system [37℄). A m-

dim 
ounter system S = (Q, T, m) is a m-dim linear


ounter system if ea
h transition t ∈ T is labeled by

a Presburger linear presentation f̄t = (ϕt, Mt,
−→
vt ) su
h

that Jl(t)K = {(−→x ,−→x ′) ∈ Z
2m; −→

x ′ = ft(
−→
x )}.

Notation. In the following, we do not distinguish any-

more a Presburger linear fun
tion f and its presentation

f̄ . There are many presentations for a single fun
tion,

however f̄ is unambiguously given by the linear 
ounter

system to be analyzed.

A key notion for linear 
ounter systems is the �nite-

ness of the monoid of the system. We now de�ne the

monoid of a linear 
ounter system. We denote by M the

set M = {Mt|t ∈ T }.

De�nition 5. The monoid M∗
of a linear 
ounter sys-

tem S is the multipli
ative monoid generated by the set

of matri
esM, i.e.M∗ =
⋃

n≥0

⋃

M1,...,Mn∈M M1 . . . Mn.

Remark 5. The �niteness of the monoid of a linear sys-

tem is de
idable in exponential time [59℄.

Many well-known sub
lasses of 
ounter systems ap-

pear to be linear 
ounter systems with �nite monoid.

Minsky ma
hines, Petri nets extended with reset/ in-

hibitor/ transfer ar
s [32,39℄, Ibarra's reversal-bounded


ounter ma
hines [47℄ and broad
ast proto
ols of Emer-

son et Namjoshi [33,34℄ are linear 
ounter systems with

�nite monoids.

4.3 Flat linear 
ounter systems with a �nite monoid

Theorem 2 ([37℄). The rea
hability binary relation of

a �at linear 
ounter system with a �nite monoid is ef-

fe
tively Presburger-de�nable.

Linear 
ounter systems with �nite monoid satisfy two

properties 
ru
ial for our approa
h. First, they en
om-

pass most of the interesting sub
lasses of 
ounter sys-

tems. As a 
onsequen
e, veri�
ation te
hniques for lin-

ear 
ounter systems are very generi
 and 
an be applied

to a large range of systems. Se
ond, the rea
hability set

of �at linear 
ounter systems with �nite monoid is ef-

fe
tively 
omputable. Compared for example to Minsky

ma
hines, they have three spe
i�
 advantages:

Transitions are stable under 
omposition, whi
h simpli-

�es the a

eleration 
omputation sin
e a sequen
e of

transitions σ behaves as a single transition.

Transitions are more expressive than those of a Minsky

ma
hine. Even if any linear 
ounter system is equiv-

alent w.r.t. rea
hability to a Minsky ma
hine, the


orresponding 
ontrol stru
ture is mu
h more di�-


ult to handle be
ause of the nested loops indu
ed

by the simulation.
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The language of guards in transitions is 
losed by dis-

jun
tion and this is a 
entral requirement for the re-

du
tion by union des
ribed in se
tion 5. This te
h-

nique is intensively used in Fast and experiments

prove it is a key feature of the tool.

5 Appli
ation to Flattable Counter Systems

An e�
ient a

eleration algorithm is not su�
ient to


ompute rea
hability sets. We need a way to sele
t whi
h


ir
uits must be used to a
hieve the 
omputation. In [7℄,

we identify the 
ornerstone notions of �attable systems

and �attenings of systems. We then dedu
e a pro
edure

for rea
hability set 
omputation, maximal in the sense

that it is 
omplete relatively to �attable systems. This

pro
edure is generi
 and s
hemati
. Generi
, in the sense

that it does not depend of the parti
ular data types

manipulated by the system; and s
hemati
, sin
e one

must implement two abstra
t sub-pro
edures (Choose

andWat
hdog) to obtain an e�e
tive (and maximal) pro-


edure. In this se
tion we re
all some results from [7℄

and present the rea
hability set 
omputation pro
edure.

We then dis
uss the implementations of the Choose and

Wat
hdog pro
edures in Fast, and introdu
e spe
i�
 op-

timizations for 
ir
uit sele
tion. Finally, we dis
uss some

questions about �attable systems.

5.1 Flattenings and �attable systems

Sin
e most systems of interest are not �at, the issue is to

deal with non-�at systems. A way to do it is to 
onsider

�attenings [7℄ of the system under study. A �attening S′

of a system S (see �gure 4) is a �at system simulated by

S. Note that �attening is a generalization of unfolding,

where one elementary 
y
le (and only one) is allowed on

ea
h lo
ation.

q1

q2

t1: x ≥ 0 ∧ x
′ = x + 2 ∧ y

′ = y

t2: x
′ = x + 1 ∧ y

′ = y

t3: x ≥ y ∧ x
′ = x ∧ y

′ = y
t4: x

′ = x − y ∧ y
′ = y

x
′ = x ∧ y

′ = y + 1

q1 q1

q2

t1

t3

q2

t4

t1

t2

q1q2

t3

t3 t4

t4

Fig. 4: A system (left) and one of its �attenings (right)

A �attening S′
of a system S de�nes a subrea
h-

ability set post∗S′(X ′) in
luded in post∗S(X) (for some

X ′
derived from X , see [7℄). A system S is �attable [7℄

when at least one of its �attenings S′
is equivalent to S

w.r.t. rea
hability, i.e. post∗S′(X ′) = post∗S(X). Sin
e S′

is �at, the set post∗S′(X ′) is 
omputable. Then using enu-

meration of �attenings and 
ir
uit a

eleration, the set

post∗(X0) 
an be 
omputed if (S, X0) is �attable. A
-

tually, the reverse impli
ation also holds [7℄. Flattable

systems appear to be a maximal 
lass for rea
hability

set 
omputation by 
ir
uit a

elerations.

5.2 A 
omplete pro
edure for �attable systems

The following pro
edure is 
omplete (w.r.t �attable sys-

tems) for rea
hability set 
omputation of (S, X0): enu-
merate a �attening S′

of S, 
ompute post∗S′(X ′
0), test if

it is a �xpoint of S: if so, return, otherwise iterate.

However, su
h a pro
edure will surely 
onsume too

many resour
es in pra
ti
e. We proposed in [7℄ an ap-

proa
h whi
h proves to be e�
ient in pra
ti
e. A re-

stri
ted regular linear expression (rlre) over an alphabet

σ is a regular expression of the form w∗
1 . . . w∗

n where

wi ∈ Σ∗
. The �xpoint 
omputation for �attable systems

redu
es to exploring the set of rlre over T . This 
an be

a
hieved by building iteratively an in
reasing sequen
e

of rlre su
h that ea
h w ∈ T ∗
is present in�nitely often

in the sequen
e.

The key issue is to sele
t the w ∈ T ∗
to be added

to the sequen
e at ea
h step, su
h that the �xpoint

is rea
hed qui
kly. Pro
edure 2 presents our 
omplete

heuristi
. Instead of 
onsidering all sequen
es in T ∗
, we


onsider only sequen
es of length less than or equal to

some bound k. This set of sequen
es is denoted T≤k
, and

a 
ir
uit sele
tion where length of 
ir
uits is limited to k

is said to be k-�attable. If the sear
h fails, it is eventu-

ally stopped, k is in
remented and the k-�attable ma
ro

is laun
hed again. Pro
edure Wat
hdog de
ides when k-

�attable should be aborted, and pro
edure Choose se-

le
ts at ea
h step a sequen
e w ∈ T≤k
.

The pro
edure is s
hemati
: Choose and Wat
hdog

are abstra
t. Assuming their implementations respe
t

the fairness 
onditions listed in pro
edure 2, the pro
e-

dure obtained is 
orre
t and 
omplete for �attable linear


ounter systems with �nite monoid [7℄.

5.3 Implementation of pro
edure rea
h2

We des
ribe the implementations of Choose and Wat
h-

dog in Fast. We believe that these solutions are generi


enough to be used with other data types than 
ounters.

Pro
edure Choose. There is no monotoni
 relationship

between the size of a region and the size of its 
on
retiza-

tion (w.r.t. ⊆). Then regions rea
hed during intermedi-

ate steps of 
omputation may have a size mu
h larger

than the one of the �nal region representing the �xpoint.
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pro
edure rea
h2(x0)
input: a ndd x0

1: x← x0 ; k ← 0
2: k ← k + 1
3: start

4: while post(x) 6⊆ x do /* k-�attable */

5: Choose fairly w ∈ T≤k

6: x← post_star(w, x)
7: end while /* end k-�attable */

8: with

9: when Wat
hdog stops goto 2
10: return x

Fairness: we assume that along an in�nite exe
ution path of

rea
h2, pro
edure Wat
hdog is 
alled in�nitely often. More-

over, between two 
alls to Wat
hdog, ea
h w ∈ T≤k
is sele
ted

at least on
e.

Pro
edure 2: Pro
edure rea
h2

Su
h large intermediate regions must be avoided as mu
h

as possible. Choose sele
ts the next w ∈ T≤k
, su
h that

|post_star(w, x)| ≤ |x|. If there is no su
h w, then the

next one is sele
ted.

Pro
edure Wat
hdog. On the one hand, the pro
edure

should dete
t as early as possible that the length of 
ir-


uits is not su�
ient to 
ompute the rea
hability set,

in order to avoid useless 
omputations. On the other

hand it should keep the length of 
ir
uits tight enough

to prevent |T≤k| from be
oming intra
table. Let us de-

note by depth the number of iterations of line 4 of Pro
e-

dure 2 (ma
ro k-�attable, depth is reset to 0 when exiting

the ma
ro). Our stop 
riterion for Wat
hdog is a maxi-

mal limit on depth. In pra
ti
e, with a value of k large

enough, the �xpoint is 
omputed within a few iterations.

Completeness? These implementations of Choose and

Wat
hdog do not fully respe
t the fairness 
onditions

de�ned in pro
edure 2, thus termination is no longer

guaranteed in theory. However, in pra
ti
e, Fast termi-

nates on many examples, as reported in se
tion 7.

5.4 Redu
tion of the number of 
y
les

A remaining issue in pro
edure rea
h2 is the 
ardinal

of T≤k
exponential in k. We use redu
tion te
hniques [7,

37℄ to de
rease dramati
ally the number of useful se-

quen
es, so that the enumeration be
omes tra
table in

pra
ti
e. The idea underlying redu
tion is that all se-

quen
es are not needed to 
ompute the rea
hability set,

and moreover in some 
ases some �nite sets of sequen
es


an safely be repla
ed by a single transition keeping the

same rea
hability set.

We mainly use two redu
tion te
hniques: redu
tion

by union [37℄ and redu
tion by 
ommutation [7℄.

Redu
tion by union 
onsists in merging two transitions

with same Presburger linear fun
tions and di�erent

system |T | k |C≤k| U C U+C


sm 13 1 14 14 14 14

2 183 103 57 35


onsisten
y 8 1 9 9 9 9

2 68 45 44 30

3 484 172 299 98

swimming pool 6 1 7 7 7 7

2 43 21 24 16

3 259 56 114 28

4 1555 126 614 47

5 9331 252 3591 86

|C≤k| : number of valid 
ir
uits of length ≤ k
U: number of valid 
ir
uits after the redu
tion by union

C: number of valid 
ir
uits after the redu
tion by 
ommutation

U+C: number of valid 
ir
uits after the redu
tion by union and


ommutation

Table 3. E�e
t of 
ir
uit redu
tions on 
ase-studies

guards f1 = (ϕ1, M,−→v ) and f2 = (ϕ2, M,−→v ) into a

unique a�ne fun
tion f1 + f2 = (ϕ1 ∨ ϕ2, M,−→v ).
Redu
tion by 
ommutation 
onsists in removing tran-

sitions g · f and f · g, where f, g ∈ T≤k
for some k,

whenever f and g satisfy

f ·g
−−→=

g·f
−−→. This is sound

w.r.t. rea
hability sin
e (
f ·g
−−→)∗ and (

g·f
−−→)∗ are then

equal to (
f
−→)∗ • (

g
−→)∗.

In [37℄, it is proven that redu
tion by union redu
es

the number of 
y
les of length ≤ k of linear 
ounter

systems with �nite monoid to a polynomial number in

k. Table 3 shows the e�e
t of these redu
tions on a few

examples. The bold value of k indi
ates the length of


ir
uits used by Fast to 
ompute the �xpoint.

Both redu
tion te
hniques appear to perform well in

pra
ti
e, and their 
ombination leads to impressive 
ut-

o�s: |C≤k| is divided by 5 in the �rst two examples,

and by 30 in the last one. Redu
tions are de�nitely a

key feature in Fast performan
es, allowing the tool to


onsider 
ir
uits of length 4 or 5 in some examples.

Beyond �at a

eleration. The redu
tion by union al-

lows to 
ompute some parti
ular kinds of nested loops.

A
tually, when 
onsidering linear 
ounter systems with

guards de�ned over the full binary automata logi
, the

union redu
tion allows to 
ompute the rea
hability set of

non-�attable 
ounter systems. The question is still open

for standard linear 
ounter systems.

5.5 Flattable systems almost everywhere!

The question �Given a linear 
ounter system with �-

nite monoid S, is S �attable?� is unde
idable, sin
e the

rea
hability problem redu
es to this question [7℄. How-

ever many interesting sub
lasses of 
ounter systems have

been shown to be �attable. It is the 
ase for 2-dim VASS

[56℄, k-reversal 
ounter ma
hines, lossy VASS, Cy
li


VASS and other sub
lasses [57℄.

This is interesting for at least two reasons. From a

pra
ti
al point of view, pro
edure 2 provides a uni�ed
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and e�
ient algorithm to de
ide rea
hability on all these

sub
lasses of 
ounter systems. This is an important step,

sin
e even though most of these sub
lasses were known

to be de
idable, their algorithms were totally di�erent

and very di�
ult to extend. From a theoreti
al point of

view, it is interesting to note that some of the previous

proofs of rea
hability used spe
i�
 
ases of 
ir
uit a

el-

eration and �attening. These proofs are easier to write

on
e these 
on
epts are 
learly identi�ed.

6 FAST: Tool des
ription

Fast [5,9℄ is a tool for 
he
king safety properties of linear


ounter systems. The tool is designed a

ording to the

�at a

eleration framework.

6.1 Computational framework

Fast is organized through a 
lient-server ar
hite
ture.

The server is the 
omputation engine as des
ribed in

se
tion 6.1. It 
ontains a Presburger library, the a

el-

eration algorithm and the sear
h heuristi
s. The 
lient

is a front-end whi
h allows the user to intera
t with the

server through a graphi
al user interfa
e (GUI, �gure 5).

The server 
an also be used as a standalone tool. The

server is written in C++ (7, 400 lines) while the 
lient is

written in Java. TheMona library [53,61℄ provides basis

for automata manipulations.

6.1.1 Software ar
hite
ture

Fast engine is stru
tured a

ording to the �at a

eler-

ation framework. The program is organized around four

main 
lasses: Presburger-a�ne fun
tions, ndd, a

elera-

tion algorithms and a �attening heuristi
.

ndd are en
oded in basis 2, least-digit �rst. The 
lass

provides standard set operations like union, interse
tion,


omplementation and proje
tion, as well as the synthesis

of a ndd from a Presburger formula. This implementation

is built on the Mona pa
kage. Note that for e�
ien
y

purposes, Mona restri
ts automata to 224
nodes.

Standard a

eleration and 
onvex a

eleration algo-

rithms are implemented, whi
h 
an be used for both

forward and ba
kward 
omputation.

The �attening heuristi
 follows pro
edure 2. Redu
tion

by 
ommutation and redu
tion by union are both avail-

able.

6.1.2 Te
hni
al issues

Pro
edure rea
h2, data stru
tures and algorithms pre-

sented in se
tions 3 and 4 provide the ba
kbone of Fast.

However, several pra
ti
al problems are not 
overed by

these results. For example, lo
ations 
an be en
oded ex-

pli
itly or by 
ounters, 
ir
uits 
an be 
omputed stati-


ally or on-the-�y. Here, we des
ribe some implementa-

tion 
hoi
es made in Fast. Currently there is no known

best solution for ea
h of the problems mentioned here-

after.

Variables in N. All the results of se
tions 3 and 4 hold

for variables ranging over Z. However in Fast 
ounters

range over N. First, the 
orresponding ndd are smaller

thanks to a simpler en
oding, whi
h leads to better per-

forman
e. Se
ond, this is not a stri
t restri
tion sin
e we

did not �nd any example where negative 
ounters were

required and moreover a variable x ∈ Z 
an always be

en
oded by two positive variables x+, x− ∈ N su
h that

x = x+ − x−
and (x+ = 0 ∨ x− = 0).

Lo
ation en
oding. A stated in remark 1 (page 4), boun-

ded variables (
ontrol, boolean, bounded integer vari-

ables) are en
oded as 
ounter variables. On the one hand

it allows for a better sharing of the rea
hability set stru
-

ture and avoids an expli
it produ
t of 
ontrol stru
tures

for systems 
omposed of many 
omponents. On the other

hand, we do not take any advantage of the boundedness

of these variables. A solution may be to extend ndd with

a bdd-like stru
ture for bounded variables, following the

work done in [11℄.

Stati
 
omputation of 
ir
uits. We 
ompute stati
ally


ir
uits of length k. Pra
ti
al 
ase studies show that this

approa
h is tra
table thanks to redu
tions. However dis-


overing 
ir
uits on-the-�y, or at least a dynami
 sli
ing

of potential 
ir
uits, would probably be useful.

6.2 Input/Output

Fast takes as input a des
ription of the system to be an-

alyzed and a strategy spe
ifying what to 
ompute. Out-

puts are textual messages stating if the system is safe or

not. Finally, a graphi
al user interfa
e is also available.

6.2.1 The input system

The linear 
ounter system 
an be des
ribed dire
tly in

the Fast formalism. However sin
e many of Fast's 
ase

studies were extended Petri nets, we developed a tool [10℄

to transform a Petri net in pnml format into a Fast

model. The language pnml [16℄ des
ribes various exten-

sions of Petri nets and is being standardized (ISO/IEC

15909-2).

6.2.2 The strategy

The strategy is a s
ript spe
ifying the sequen
e of 
om-

putations to perform in order to prove the 
orre
tness of

the system. This s
ript language manipulates sets of 
on-

�gurations (region), sets of transitions (transition)
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and booleans. All basi
 set-operations are available. The

user 
an de�ne �nite sets of transitions T ′ ⊆ T ∗
and

primitives to 
ompute post∗(T ′, X0) and pre∗(T ′, X0) are
provided. A standard forward analysis is spe
i�ed us-

ing only four instru
tions: de
lare the initial region X0,


ompute the rea
hability set post∗(T ′, X0), de
lare the

region P des
ribing the property to 
he
k and �nally test

whether post∗(T ′, X0) ⊆ P .

The language also allows the user to guide the tool

more pre
isely. For example a system 
an be analyzed

in an in
remental way, dividing the whole system into

smaller parts (
f. se
tion 9); the user 
an indi
ate 
ir
uits

to be used; 
hoose the a

eleration algorithm; or set up

parameters of the heuristi
s.

The s
ript language gives the user 
ontrol over the se-

quen
e of 
omputations performed. This 
an prove use-

ful when the fully automati
 approa
h fails. Thus, Fast

stands between a fully automati
 approa
h, justi�ed when

termination is guaranteed but restri
tive otherwise, and


omputer-aided veri�
ation.

6.2.3 User Interfa
e

A graphi
al user interfa
e [6℄ is available (see �gure 5). It

provides aided editing of systems and strategies, pretty

printing, and prede�ned strategies. On
e the 
omputa-

tion starts, the interfa
e supplies the user with feedba
k

on a number of parameters (memory 
onsumption, time

elapsed, et
.).

6.3 FAST Extended Release

An extended version of Fast has been presented in [9℄.

This new release o�ers mainly an open ar
hite
ture al-

lowing to plug easily any Presburger pa
kage to the tool.

Open ar
hite
ture. The ar
hite
ture has been slightly

redesigned and is now divided into two parts: on the

one side, a 
ounter system analysis engine built upon a

generi
 Presburger API (instead of a ndd pa
kage); on

the other side, various implementations of this API. The

generi
 Presburger programming interfa
e (Genepi) re-

quires only basi
 set-theoreti
 operations on Presburger-

de�nable sets. We provide three implementations of the

API based on standard pa
kages Lash [55℄, Mona [61℄

and Omega [62℄. The �rst two pa
kages are automata-

based while Omega is formula-based. TheMona imple-

mentation 
orresponds to the original version of Fast.

All experiments 
arried out in this paper use the Mona

implementation.

The shared automata pa
kage. An implementation of

the API using shared automata introdu
ed by Couvreur

in [28℄ has been developped by Jér�me Leroux and Gérald

Point. These automata share their strongly 
onne
ted

Fig. 5: Fast graphi
al user interfa
e


omponents in a bdd-like manner, allowing to implement

important features for intensive 
omputation, su
h as


a
he 
omputation and 
onstant-time equality testing.

The library is fun
tional, but the 
omputation 
a
he

is not su�
iently optimized yet. The shared automata

pa
kage is 
alled PresTaf.

Experimental 
omparisons performed in [9℄ demonstrate

that the three automata-based implementations of the

generi
 Presburger API largely outperform the formula-

based implementation. Indeed Omega appears to 
om-

pute unduly 
ompli
ated Presburger formulas (even with

the simpli�
ation method provided by the pa
kage), while

Lash, Mona and PresTaf bene�t from 
anoni
al rep-

resentations of automata.

7 Experiments

This se
tion reports some experiments made with Fast.

7.1 About tests

We use a large pool of 
ounter systems and 
ase studies

analyzed by tools Alv, Babylon

3

, Brain, Lash and

TReX to evaluate Fast. These 37 systems are available

on Fast web pages [35℄.

3

http://www.ulb.a
.be/di/ssd/lvanbegin/CST
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Symbol Meaning

m number of 
ounters

T set of transitions

k length of 
ir
uits used by Fast

C≤k
set of 
ir
uits of length ≤ k

|A| number of nodes of the ndd

|ρ| length of the rlre built by rea
h2

↑↑↑ memory ex
eeded

≥ c time elapsed (memory 
onsumed)

greater than c se
onds (Mb)

? unknown value

- 
omputation does not apply

Table 4. Symbols used in test reports

These systems range from tri
ky a
ademi
 puzzles like

the swimming pool proto
ol [42℄ to industrial 
ase stud-

ies like the 
a
he 
oheren
e proto
ol for the Futurebus+.

We distinguish three 
ategories of systems: 
ounter sys-

tems with a �nite rea
hability set, monotoni
 
ounter

systems with an in�nite rea
hability set and linear 
ounter

systems with an in�nite rea
hability set.

All experiments have been performed on an Intel Pen-

tium III 933Mhz equipped with 512 Mbytes of memory.

Time is in se
onds and memory in Mbytes. Fast is used

with the following settings: standard a

eleration, basi


strategy (no human guidan
e), Mona-based implemen-

tation of the Presburger API.

7.2 Results

Table 5 reports Fast behavior on the examples, us-

ing forward 
omputation. The number of 
y
les |C≤k| is
given after redu
tions (union and 
ommutation).

Fast 
omputes su

essfully the rea
hability set of 78%
of the systems 
onsidered. This ratio is 74% when 
on-

sidering only unbounded systems. We show in se
tion 8

that Fast performs better than similar tools.

These good results validate the design of Fast. First,

all examples are expressed straightforwardly by means

of 
ounter systems. Se
ond, the monoid is always �nite.

At least 78% of the systems are �attable and have a

Presburger-de�nable rea
hability set. Finally in 19% of

the tests, the length of 
ir
uits used is stri
tly greater

than 1. This number in
reases to 22% when 
onsidering

only unbounded 
ounter systems. This proves that 
on-

sidering 
ir
uits and not only loops is a major feature.

Fast limitations are likely to be more pra
ti
al (mem-

ory 
onsumption, time elapsed) than theoreti
al. Cru
ial

points are not only the number of variables, but also

(and mainly!) the stru
ture of the rea
hability set and

the length k of the 
ir
uits used. Indeed, when k is too

large, the stati
 
omputation of 
ir
uits 
onsumes too

many resour
es.

8 Comparison with other tools

In this se
tion, we 
ompareFast with other tools, namely

Alv, Lash and TReX, to evaluate their performan
e on

exa
t forward rea
hability set 
omputation. Let us pin-

point that the goal here is not to �nd out whi
h tool is

the best for 
ounter system validation. A
tually, it would

be unfair for TReX whi
h is mostly designed for timed

automata extended with integer variables, and for Alv

whi
h o�ers full CTL model 
he
king, ba
kward 
ompu-

tation, over-approximation and di�erent symboli
 repre-

sentations. These experiments are rather used to evalu-

ate the 
ontribution of ea
h parti
ular feature of Fast.

8.1 The tools

First, we present the tools Alv, Lash and TReX, and


ompare them with Fast through the �at a

eleration

framework.

Alv [25,68℄ is designed to 
he
k any CTL formula on

full 
ounter systems. Alv also o�ers di�erent sym-

boli
 representations for integer ve
tors (automata

or Presburger formula) and a wide range of options,

like ba
kward 
omputation, over-approximation [12℄

for the automata-based representation and a

elera-

tion [50℄ for the formula-based representation. This

a

eleration algorithm is designed for the following


lass of operations: there is no guard and a
tions

are mostly relations of the form x′
i#xi + c where

# ∈ {≤, =,≥} and x′
i is the value of variable xi after

the transition o

urs. Typi
ally Alv uses approxi-

mate forward �xpoint 
omputation to prune the state

spa
e during the ba
kward �xpoint 
omputations.

In the rest of the paper, we use the following 
on�g-

uration: automata-based representation (then no a
-


eleration), forward 
omputation, no over-approximation.

In this 
on�guration, the main di�eren
es with Fast

are that no a

eleration algorithm is available, the

heuristi
 is similar to rea
h1 and bounded variables

are en
oded by bdd [11℄.

Lash [55℄ works on linear 
ounter systems. Regions

are en
oded by automata and standard a

eleration

is implemented for fun
tions with a �nite monoid.

Without user guidan
e, Lash is restri
ted to loop

a

eleration (i.e. the heuristi
 
onsiders only words

w ∈ T instead of sequen
es in T ∗
) be
ause no 
ir
uit

sear
h is supplied.

TReX [3℄ manipulates 
ounter systems restri
ted to

timed automata-like operations

4

: guards are 
onjun
-

tions of 
onstraints xi −xj ≤ c and a
tions are of the

form x′
i = xj +c where xi is a variable, c is a 
onstant

and xj is a variable or the 
onstant 0. Regions are en-

oded by pdbm, an extension of dbm with additional

4

A
tually TReX is designed to 
he
k systems with 
lo
ks and


ounters. We 
onsider here the restri
tion to 
ounter systems.
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System m |T | se
 Mb |ρ| k |C≤k|
Bounded 
ounter systems

Produ
er/Consumer 5 3 0,41 2,37 3 1 3

RTP 9 12 2,24 2,76 8 1 12

Lamport ME 11 9 2,70 2,88 11 1 9

Reader/Writer 13 9 9,68 23,14 23 1 9

Peterson ME 14 12 4,97 3,78 12 1 12

Dekker ME 22 22 21,72 5,48 36 1 22

Monotoni
 unbounded 
ounter systems

Manufa
turing 7 6 ≥ 1800 ? ? ? ?

swimming pool 9 6 111 29,06 9 4 47

CSM 13 13 45,57 6,31 32 2 35

Kanban 16 16 10,43 6,54 2 1 16

Multipoll 17 20 22,96 5,13 13 1 20

FMS 22 20 157,48 8,02 23 2 46

extended ReaderWriter 24 22 ≥ 1800 ? ? ? ?

pn
sa 31 38 ≥ 1800 ? ? ? ?

Mesh2x2 32 32 ≥ 1800 ? ? ? ?

Mesh3x2 52 54 ≥ 1800 ? ? ? ?

Unbounded 
ounter systems

Synapse Ca
he Coheren
e 3 3 0,30 2,23 2 1 3

Berkeley Ca
he Coheren
e 4 3 0,49 2,75 2 1 3

M.E.S.I. Ca
he Coheren
e 4 4 0,42 2,44 3 1 4

M.O.E.S.I. Ca
he Coheren
e 4 5 0,56 2,49 3 1 5

lift 
ontroller - N 4 5 4,56 2,90 4 3 20

Illinois Ca
he Coheren
e 4 6 0,97 2,64 4 1 6

Fire�y Ca
he Coheren
e 4 8 0,86 2,59 3 1 8

Dragon Ca
he Coheren
e 5 8 1,42 2,72 5 1 8

Esparza-Finkel-Mayr 6 5 0,79 2,55 2 1 5

ti
ket 2i 6 6 0,88 2,54 5 1 6

ti
ket 3i 8 9 3,77 3,08 10 1 9

barber m4 8 12 1,92 2,68 8 1 12

bakery 8 20 ≥ 1800 ? ? ? ?

Futurebus+ Ca
he Coheren
e 9 10 2,19 3,38 8 1 10

Consisten
y 12 8 200 7,35 9 3 98

Central Server 13 8 20,82 6,83 11 2 25

Last-in First-served 17 10 1,89 2,74 12 1 10

Produ
er/Consumer Java - 2 18 14 13,27 3,81 53 1 14

Produ
er/Consumer Java - N 18 14 401,5 12,46 86 2 75

In
/De
 32 28 ≥ 1800 ? ? ? ?

2-Produ
er/2-Consumer Java 44 38 ≥ 1800 ? ? ? ?

Table 5. Fast in pra
ti
e

parameters 
onstrained by an arithmeti
 formula. An

a

eleration pro
edure is implemented, whi
h allows

at least all a

elerations of Fast and Lash. However

this pro
edure produ
es unrestri
ted arithmeti
 for-

mulas and then in
lusion be
omes unde
idable. The

heuristi
 is restri
ted to C≤k
, for a value of k stat-

i
ally de�ned by the user. Finally, TReX does not


ompute 
ir
uits stati
ally but dis
overs them on-

the-�y. A more in-depth 
omparison of Fast and

TReX is presented in [29℄.

Table 6 
ompares the di�erent tools through the �at

a

eleration framework. Column �termination� indi
ates

the 
lass of systems for whi
h the tool terminates (F:

�attable, k-F: k-�attable, Unif-b: uniformly bounded).

8.2 Comparison on forward 
omputation

We now 
ompare the 
apabilities of Alv, Lash, Fast

and TReX in exa
t forward 
omputation of rea
hability

sets. The 
ounter systems 
hosen for tests all have an

in�nite rea
hability set, ex
ept systems RTP, Lamport

and Dekker. Results are summarized in table 7.
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Alv full ndd no Unif-b

Fast linear ndd �at F

Lash linear ndd loop 1-F

TReX restri
ted pdbm interpolation k-F (

∗
)

(

∗
) Termination modulo an ora
le to de
ide in
lusion.

Table 6. Di�erent tools for the veri�
ation of 
ounter systems.

Experimental results show a drop in performan
e of

Alv and Lash when k in
reases. Fast 
ompletely sup-

ports the �at a

eleration framework and obtains the

best results. On the other side, Alv does not supply any

a

eleration me
hanism and the tool does not su

eed in


omputing these 
omplex rea
hability sets. BetweenAlv

and Fast, the tool Lash is restri
ted to loop a

elera-

tion and it terminates only on simple examples (k ≤ 1).
Note that when Lash is provided with the 
ir
uits to

use, its performan
e is similar to that of Fast. The dif-

feren
e between Fast and Lash is primarily the length

of 
ir
uits, not the ndd implementation. Finally, TReX

performan
e is less 
orrelated with k, sin
e the tool ter-
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System Alv(∗) Lash Fast k TReX

RTP (bounded) T T T 1 T

Lamport (bounded) T T T 1 T

Dekker (bounded) T T T 1 T

ti
ket 2 T T T 1 T

kanban ↑ T T 1 T

multipoll ↑ T T 1 ↑
prod/
ons java (2) ↑ T T 1 -

prod/
ons java (N) ↑ ↑ T 2 -

lift 
ontrol, N ↑ ↑ T 2 T

train ↑ ↑ T 2 T


sm, N ↑ ↑ T 2 ↑

onsisten
y ↑ ↑ T 3 -

swimming pool ↑ ↑ T 4 ↑
pn
sa ↑ ↑ ↑ ? ↑
in
de
 ↑ ↑ ↑ ? ↑
bigjava ↑ ↑ ↑ ? ↑

T: 
omputation of the rea
hability set in less than 20 minutes

↑: no termination in less than 20 minutes

- : the systems 
annot be modeled in TReX

(∗) These results are 
onsistent with those reported by Bultan and

Bartzis in [12℄.

Table 7. Comparison of di�erent tools

minates for the lift system (k = 2) and fails on multipoll

(k = 1).

These results demonstrate a strong 
orrelation between

the �at a

eleration framework and pra
ti
al termina-

tion. Comparison betweenAlv and Lash shows the ben-

e�ts of a

eleration, while 
omparison between Lash and

Fast highlights the ne
essity of sele
ting 
ir
uits and not

only loops.

TReX results show that pdbm is not a good symboli


framework for 
ounter systems, sin
e many systems 
an-

not be modeled this way and moreover, despite a

eler-

ation, termination o

urs less frequently. Again, re
all

that TReX is primarily designed to handle parametri


timed systems.

8.3 Comments

Fast appears to be a very e�
ient tool for the forward


omputation of rea
hability sets of 
ounter systems. In

experiments, Fast performan
e is 
learly superior to

that of similar tools Alv, Lash and TReX.

Again, re
all that it does not ne
essarily imply that

Fast is better then the other tools for 
ounter systems

validation sin
e we restri
ted the experiments to exa
t

forward 
omputation while other approa
hes exist. More-

over, re
all that we use restri
tions of Alv and TReX

whi
h are primarily designed to handle di�erent systems

(TReX) or ri
her properties (Alv). Yet, we believe that

the 
omputation of the exa
t rea
hability set of a linear


ounter system is an important issue and in this setting,

te
hnologies implemented in Fast are 
learly superior.

9 The TTP proto
ol

This se
tion des
ribes the veri�
ation of the TTP pro-

to
ol with the tool Fast. In prior work the proto
ol

was veri�ed 
orre
t by hand (for an arbitrary number

of faults) or in a 
omputer-aided manner (for one fault)

with Lash and Alv. These tools 
ould not verify 
or-

re
tness for two faults. Fast 
he
ks automati
ally the


orre
tness of the proto
ol for one fault, and 
orre
tness

is proved for two faults, using abstra
tions.

9.1 Proto
ol des
ription

The TTP proto
ol [54℄ is supported by the transport

industry (Airbus, Audi, EADS, PSA and others) and

aims at managing embedded mi
ropro
essors. We fo
us

here on the group membership algorithm of the TTP. It

is a fault-tolerant algorithm, preventing the partitioning

of valid mi
ropro
essors (stations) after a failure.

A 
lique is a subset of stations 
ommuni
ating only

with stations of the same 
lique. In normal behavior,

there is only one 
lique 
ontaining all the valid stations.

The proto
ol ensures that when a fault o

urs and 
re-

ates di�erent 
liques among the stations, after a while

valid stations belong to a unique 
lique.

Des
ription. Time

5

is divided into rounds. Ea
h round

is divided into as many slots as stations. The proto
ol

behaves as follows (a more 
omplete des
ription 
an be

found in [54,22℄):

1. Ea
h station si keeps the following information: a

list li of boolean values stating, for ea
h station sj ,

whether si 
onsiders sj as valid or not; two 
ounters

Ci
Ack and Ci

Fail.

2. During a slot, only one station broad
asts a message

and the others re
eive it. The message is the list li.

3. When a station sj re
eives a message from a station

si: if li 6= lj , or if no message is re
eived, then sj


onsiders si as faulty; lj is updated and C
j
Fail is in-


remented. Otherwise C
j
Ack is in
remented.

4. When a station si is about to broad
ast a message:

if Ci
Ack ≤ Ci

Fail then si 
onsiders itself as invalid and

be
omes ina
tive (no emission). Otherwise Ci
Ack and

Ci
Fail are reset to 0, and li is broad
asted to all other

stations.

9.2 Modeling

We use the modeling proposed by Mer
eron and Boua-

jjani in [22℄. This modeling is based on 
ounter systems.

It 
aptures an arbitrary number N of stations but only

5

Clo
ks are syn
hronized by other me
hanisms of the TTP pro-

to
ol.
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a �xed number of faults. Mer
eron and Bouajjani a
tu-

ally provide an in�nite family of 
ounter systems, ea
h

modeling the behavior of the proto
ol for some number

f of faults.

The 
ounter system for f = 1 is given in �gure 6. Vari-

able Cw (resp. CF ) denotes the number of a
tive stations

(resp. ina
tive stations). Variable Cp 
ounts the number

of slots elapsed during the round. Sin
e a round is di-

vided into N slots, when Cp = N , variable Cp is reset

to 0 and a new round begins. Lo
ation normal models

the normal behavior of the proto
ol. When a fault o
-


urs, the proto
ol enters abnormal behavior. Lo
ation

Round1 is the �rst round following the error. Lo
ation

later represents the other rounds. A fault divides ar-

bitrarily a
tive stations into two 
liques C1 and C0. We

denote by C1 and C0 the number of stations of 
liques

C1 and C0. Variable d (resp. d0, d1, dF ) 
ounts the num-

ber of a
tive stations (resp. from C0, from C1, ina
tive)

whi
h have emitted during the round.

/ CF=0,CW=N,Cp=0
d=0,dF=0

/ C1>=0, C0>=0, 
C1+C0=CW, d1=1,d0=0,

dF=0,Cp=1

later

round1normalinit

d=0,dF=0

Cp=N /
CW=C1+C0,Cp=0,

Cp=0,d=0,dF=0
Cp=N / 

dF<CF /
dF++, Cp++

d1<C1 & C1+C0−2d0>0 /
d1++, Cp++

C1−−,dF++,CF++,Cp++
d1<C1 & C1+C0−2d0<=0/

d0<C0 & C1+C0−2d1>0 /
d0++, Cp++

d0<C0 & C1+C0−2d1<=0 /
C0−−,dF++,CF++,Cp++

dF<CF /
dF++,Cp++

d1++,Cp++
d1<C1 & C1>C0 /

d1<C1 & C1<=C0 /
C1−−,CF++,dF++,Cp++

d0<C0 & C0>C1 /
d0++,Cp++

d0<C0 & C0<=C1 /
C0−−, CF++, dF++,Cp++

Cp=N & !(C1=0) & !(C0=0) /
d1=0,d0=0,dF=0,Cp=0

d<CW / d++,Cp++

dF<CF / dF++,Cp++

Cp=N /  d1=0,d0=0,dF=0,Cp=0

Fig. 6: Model for the TTP, 1 fault

The safety property to 
he
k is that, at most two rounds

after the fault o

urs, there is only one 
lique left. It

is expressed in this model by the following property

(P1) : lo
ation = later ∧ Cp = N ⇒ (C1 = 0 ∨ C0 = 0).

Remark 6. This spe
i�
ation is a
tually in
omplete, and

we should 
he
k: For all paths, if a fault o

urs then lo-


ation later is rea
hed and property P1 holds. However

this property is not a safety property. Model 
he
king

tools for in�nite state systems su
h as Alv 
an han-

dle these type of properties whi
h 
annot be handled by

rea
hability tools su
h as Fast.

Interests of this 
ase study. The number of 
ounters is

not large (9), and a
tions are standard. However guards

are 
omplex linear inequalities involving many variables.

The 
ounter system is not an extended VASS nor a re-

stri
ted 
ounter system manipulated by TReX. More-

over, be
ause of the strong 
onne
tion between variables,

the rea
hability set has a very 
omplex stru
ture. How-

ever, it is Presburger-de�nable.

9.3 Automati
 veri�
ation for 1 fault

The 
ounter system of �gure 6 is not linear be
ause of

the non-deterministi
 assignment of the transition be-

tween lo
ation normal and lo
ation Round1. Hopefully,

sin
e the transition between later and normal models

returning ba
k to the normal mode, property P1 is only


on
erned with what happens in later, and variables af-

fe
ted non deterministi
ally are not used in normal, we


an remove this transition. Then the non deterministi


assignment 
an be en
oded into the initial region.

The resulting linear 
ounter system is presented in �g-

ure 7. This system has a �nite monoid.

later

round1normalinit

Cp=0,d=0,dF=0
Cp=N / 

dF<CF /
dF++, Cp++

d1<C1 & C1+C0−2d0>0 /
d1++, Cp++

C1−−,dF++,CF++,Cp++
d1<C1 & C1+C0−2d0<=0/

d0<C0 & C1+C0−2d1>0 /
d0++, Cp++

d0<C0 & C1+C0−2d1<=0 /
C0−−,dF++,CF++,Cp++

dF<CF /
dF++,Cp++

d1++,Cp++
d1<C1 & C1>C0 /

d1<C1 & C1<=C0 /
C1−−,CF++,dF++,Cp++

d0<C0 & C0>C1 /
d0++,Cp++

d0<C0 & C0<=C1 /
C0−−, CF++, dF++,Cp++

Cp=N & !(C1=0) & !(C0=0) /
d1=0,d0=0,dF=0,Cp=0

/ C1>=0, C0>=0, 
C1+C0=CW, d1=1,d0=0,

dF=0,Cp=1
CF=0,CW=N,Cp=0
d=0,dF=0

d<CW / d++,Cp++

Cp=N /  d1=0,d0=0,dF=0,Cp=0

dF<CF / dF++,Cp++

Fig. 7: Linear 
ounter system for the TTP, 1 fault

Results. Fast 
he
ks automati
ally that property P1 is

satis�ed. The 
omputation of the rea
hability set re-

quires only 
y
les of length 1, and the minimal ndd 
om-

puted has 27, 932 nodes. Computation takes 1, 880 se
-

onds and 73 Mb of memory.

In
remental analysis. The 
omputation time 
an be re-

du
ed via a better s
ript strategy. Indeed, Fast heuristi


does not take into a

ount the parti
ular aspe
t of the


ontrol graph of the proto
ol. Sin
e there is no return-

ing ba
k in the graph, we 
an �rst 
ompute the set of

all 
on�gurations rea
hable on lo
ation normal, then �re

the transition to rea
h lo
ation Round1, and iterate the

pro
ess. This de
omposition is made expli
it in �gure 8.
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With this method, 
omputation time drops to 203 se
-

onds for a memory 
onsumption of 55 Mb

6

.

later

round1normalinit

Fig. 8: Modular de
omposition of the TTP

9.4 Veri�
ation for 2 faults

The linear 
ounter system for two faults is presented

in �gure 9. The normal behavior is not des
ribed in the

�gure. The system is mu
h larger than the one for one

fault, with 18 variables and guards involving up to 14

variables. There are now three di�erent 
liques. The ab-

sen
e of 
lique is expressed here by:

(P2) : lo
ation = later ∧ Cp2 = N ⇒ (C11 6= 0 ∧
C10 = C00 = 0) ∨ (C10 6= 0 ∧ C11 = C00 = 0) ∧ (C00 6=
0 ∧ C10 = C11 = 0)

Need for 
onvex a

eleration. When 
omputing the tran-

sitive 
losure of transitions, the size of the automata


omputed be
omes too large and ex
eeds Fast limita-

tion of 224
nodes, 
ausing the program to 
rash. Lu
kily

all transitions are 
onvex translations, ex
ept t26 whi
h

does not need to be a

elerated sin
e it does not be-

long to any 
ir
uit. Hen
e the 
onvex a

eleration 
an

be used, and transitive 
losures of transitions have all

been 
omputed.

Fixed number of stations. For a small �xed number of

stations, the rea
hability set is 
omputed. For N = 5,
the rea
hability set is 
omputed and P2 is 
he
ked to be

true. Computation requires 900 se
onds and 588 Mb(!)

of memory. The �nal ndd has 5, 684 nodes. Computa-

tion su

eeds with N = 10, but fails for N = 15 (the

automata are too large).

6

The resulting minimal ndd is the same than the one previously


omputed, but intermediate 
omputations are less expensive.

later

round1

Pred1 :

Pred2 :

Pred3 :

d1+d11−dA11−dF11−dA10−dF10−d0−d10−d00+dA00+dF00>0

d1+d10−dA10−dF10−dA11−dF11−d0−d11−d00+dA00+dF00>0

d0+d00−dA00−dF00−d1−d11−d10+dA11+dA10+dF11+dF10>0

t2

t3

t4 t6
t7

t8

t18

t19

t21t22
t23

t25

t27

t26

      dF++, dF00++,Cp1++,Cp2++,C00−−

        d11++,Cp1++,Cp2++
t3: Cp1<N & d10<C10−d1 & CW −2d0 −2d00 −2d11>0/
      d10++,Cp1++,Cp2++     
t4 : Cp1<N & d00<C00−d0 & CW−2d1−2d10−2d11>0/
      d00++,Cp1++,Cp2++

        dF++,Cp1++,Cp2++,C11−−
t7 : Cp1<N & d10<C10 & CW−2d0−2d00−2d11<=0/

        dF++,Cp1++,Cp2++,C10−−
t8 : Cp1<N &d00<C00−d0 & CW−2d1−2d10−2d11<=0/

        dF++,Cp1++,Cp2++,C00−−

t19 : Cp1>=N & Cp2<N & Pred2/

        dF++,dF11++,Cp1++,Cp2++,C11−−
      dF++,dF10++,Cp1++,Cp2++,C10−−

t34

t33

t32

t31
t30

t28

d00=0 & d11=0 & d10=0 & 
dA00=0 & dA11=0 & dA10=0 &
dF00=0 & dF11=0 & dF10=0 &
dF=0 & Cp2=1 & Cp1=d0+d1+1 &
N>=0 & CW=N & C11>=1 &
C00>=1 & C10>=1 & d1<=C10 &
d0<=C00 & C11+C00+C10=CW

t2 : Cp1<N & d11<C11 & CW−2d0−2d00−2d10>0/ 

t6 : Cp1<N & d11<C11−d1 & CW−2d0−2d00−2d10<=0/ 

t18 : Cp1>=N & Cp2<N & Pred1/       d11++,Cp1++,Cp2++,dA11++
      d10++,Cp1++,Cp2++,dA10++
   d00++,Cp1++,Cp2++,dA00++t21 : Cp1>=N & Cp2<N & Pred3/

t22 : Cp1>=N & Cp2<N & !Pred1/  
t23 : Cp1>=N & Cp2<N & !Pred2/ 
t25 : Cp1>=N & Cp2<N & !Pred3/

t26 : Cp2=N /  dF=0,d11=0,d10=0,d00=0,Cp2=0 

t27 : Cp2<N & d11<C11 & C11−C10−C00>0 /        d11++,Cp2++
       d10++,Cp2++
       d00++, Cp2++

t28 : Cp2<N & d10<C10 & C10−C11−C00>0 /
t30 : Cp2<N & d00<C00 & C00−C10−C11>0 /
t31 : Cp2<N & d11<C11 & C11−C10−C00<=0 /

       C11−−,Cp2++,dF++,CF++
t32 : Cp2<N & d10<C10 & C10−C11−C00<=0 /
       C10−−,Cp2++,CF++,dF++

       C00−−,Cp2++,CF++,dF++
t34 : Cp2<N & dF<CF / Cp2++,dF++

t33 : Cp2<N & d00<C00 & C00−C10−C11<=0 / 

Fig. 9: Counter system for the TTP, 2 faults

Arbitrary number of stations. Sin
e automata en
oun-

tered during the 
omputation are too large, we 
ompute

an over-approximation of the rea
hability set by relaxing

some 
onstraints and removing some variables. We hope

this approximation has a simpler stru
ture and is still

pre
ise enough to 
on
lude. We use the following tri
ks:

Redu
tion of the number of variables, by using straight-

forward invariants like CW = C11 + C10 + C00.

Over-Approximation of the behavior, by removing some


omplex terms in the guards. Moreover some vari-

ables are removed in this pro
ess.

Modular 
omputation, as des
ribed for one fault, to

speed up 
omputation.

The abstra
tion of the system is presented in �g-

ure 10. Fast 
he
ks that P2 holds on this system, whi
h

proves the 
orre
tness of the TTP for 2 faults.

9.5 Results

Results are summarized in table 8. Convex a

eleration

always performs better than standard a

eleration, in

both time and spa
e.

9.6 Veri�
ation with Alv, Lash and TReX

Here we report the tests we 
arried out to verify the

TTP with the tools Alv, Lash and TReX.

With Alv

7

, the rea
hability set 
omputation does not

terminate for one fault and an arbitrary number of sta-

7

The settings are those 
onsidered in se
tion 8.
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round1
d00=0 & d11=0 & d10=0 & 
Cp2=1 & N>=0 & C11>=1 & 
C00>=1 & C10>=1 &  
C00+C11+C10=N

later

t2−t18 : Cp2<N & d11<C11 / 
        d11++,Cp2++

t7−t23 : Cp2<N & d10<C10 /
        Cp2++,C10−−

        Cp2++,C00−−

t6−t22 : Cp2<N & d11<C11 / 
        Cp2++,C11−−

t4−t21 : Cp2<N & d00<C00 /
      d00++,Cp2++

t3−t19: Cp2<N & d10<C10 /
      d10++,Cp2++     

t8−t25 : Cp2<N &d00<C00 /

            Compute reachable states R1

         reachable states R1

t34 : Cp2<N & dF<CF / Cp2++,dF++ t27 : Cp2<N & d11<C11 & C11−C10−C00>0 / 
       d11++,Cp2++

t28 : Cp2<N & d10<C10 & C10−C11−C00>0 /
       d10++,Cp2++

t30 : Cp2<N & d00<C00 & C00−C10−C11>0 /
       d00++, Cp2++

t31 : Cp2<N & d11<C11 & C11−C10−C00<=0 /
       C11−−,Cp2++,dF++,CF++

t32 : Cp2<N & d10<C10 & C10−C11−C00<=0 /
       C10−−,Cp2++,dF++,CF++

t33 : Cp2<N & d00<C00 & C00−C10−C11<=0 / 
       C00−−,Cp2++,CF++,dF++

Check Property P2 :
Cp2=N => C11=0&C10=0&C00>0
                || C11=0&C10>0&C00=0
                || C11>0&C10=0&C00=0

Fig. 10: Abstra
tion for the TTP, 2 faults

standard a

. 
onvex a

.

faults - stations time mem. time mem. n. of

se
. Mb se
. Mb nodes

1 - N 1,880 73 1,200 63 27,932

2 - 5 ↑↑↑ (

∗
) ↑↑↑ (

∗
) 892 588 5,684

2 - 10 ↑↑↑ (

∗
) ↑↑↑ (

∗
) 24,365 588 273,427

2 - 15 ↑↑↑ (

∗
) ↑↑↑ (

∗
) ↑↑↑ ↑↑↑ ↑↑↑

2 - N ↑↑↑ (

∗
) ↑↑↑ (

∗
) ↑↑↑ ↑↑↑ ↑↑↑

2 - N 420 200 350 200 11,036

(abstra
tion)

(

∗
) The memory is saturated by a

eleration 
omputation; the

veri�
ation pro
ess does not go further.

Table 8. Ben
hmark for the TTP (Fast)

tions. The veri�
ation reported in [22℄ is not fully au-

tomati
: Alv is used to 
he
k an intermediate invariant

guessed by the authors on lo
ation round1. This invari-

ant is then used to 
ompute an over-approximation of the

set of rea
hable states in lo
ation later. This is su�
ient

here to ensure the 
orre
tness, but the exa
t rea
hability

set is never 
omputed and the approa
h needs to guess

the appropriate invariant.

Lash su

essfully 
omputes the rea
hability set for one

fault and an arbitrary number of stations, sin
e only loop

a

eleration is required. However for two faults, the a
-


eleration algorithm saturates the memory and the ver-

i�
ation fails.

Finally, the TTP 
annot be modeled in the (restri
ted)


ounter systems manipulated by TReX.

10 The CES servi
e

In this se
tion, we des
ribe the veri�
ation of the servi
e

expe
ted from the Capability Ex
hange Signaling Proto-


ol (CES). In [58℄ Billington and Liu prove by hand the

stru
ture of the rea
hability graph. Fast automati
ally


he
ks the results from [58℄ des
ribing the nodes in the

rea
hability graph.

10.1 Servi
e des
ription

The proto
ol aims at one peer informing the other of its

multimedia 
apabilities. The length of 
ommuni
ation


hannels (bu�ers) intervenes here as a parameter.

Figure 11 presents a 
olored Petri net modeling the

CES servi
e. This net is derived from [58℄. Colored Petri

nets (CPN) [48℄ are an extension of Petri nets where

tokens are arbitrary typed data values (
oloring). Col-

ored tokens 
onsumed and produ
ed by transitions are

de�ned by terms on the ar
s. Fun
tions and types are

expressed in the ML language.

Pla
es OutControl and InControl always 
ontain only

one token having two possible values. Pla
e forTransfer


ontains a queue with a unique kind of message. Pla
e

revTransfer 
ontains a queue with two kinds of messages:

transRes and rejReq. Finally, pla
e dSymbol uses three

tokens, ea
h 
ontaining a list of symbols. The transition

forLOST models the loss of messages.

Remark 7. The length of queue forTransfer is bounded

by l in this system, where l is a parameter of the CPN.

When analyzing the CPN, the value of this parameter

must be �xed. We want to remove this limitation in our


ounter system to enable a parametri
 veri�
ation of the

proto
ol.

Billington and Liu [58℄ study the stru
ture of the rea
h-

ability graph of the CES servi
e. In parti
ular, they

prove that the rea
hability set 
ontains exa
tly 12 
on�g-
urations for a queue of length 1, and for ea
h in
rement

of the queue length, 4 new 
on�gurations are added to

the rea
hability set. These additional 
on�gurations are


ompletely 
hara
terized [58, table 2, page 287℄.

Interest. The CES is naturally a queue system. Sin
e

Fast manipulates 
ounters and not queues, it was not

the best suited tool at �rst sight. We show how to model

on this spe
i�
 
ase the queues by 
ounters, and how to


he
k with Fast that the translation is sound. Su
h an

approa
h is further detailed in [18,17℄.

10.2 A 
ounter system for the CES

The �rst step is to transform the CPN into a 
ounter

system. Queues are modeled expli
itly in the CPN, but
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inControl
states

1‘idleINF
outControl

states

1‘idleINF

TRANSFERcnf

TRANSFERreq

[length(rq)<l]

REJECTindP

REJECTindU TRANSFERresREJECTreq

TRANSFERindREJECTind

revTransfer

response

1‘[]

forTransfer
request

1‘[]

dSymbol1‘dO([])++1‘d1([])
++1‘d2([])

dsymbol

forLOST

color states = with idleINF | awaitingINF;
color req = with transReq;
color request = list req;
color res = with transRes | rejReq;
color response = list res;
color dsym = with d;
color dsymb = list dsym;
color dsymbol = union dO: dsymb + d1: dsymb + d2: dsymb;

var rq: request;     
var rs: response;
var dsO,ds1,ds2: dsymb;
var st: states;

fun f1(dsO,ds1,st) = if dsO=[] orelse (st=awaitingINF andalso length(dsO)=1)   
 then 1‘dO(dsO)++1‘d1(ds1^^[d]) 
    else 1‘dO(tl(dsO))++1‘d1(ds1);
fun f2(dsO,ds2) = if dsO=[] 
    then 1‘dO(dsO)++1‘d2(ds2^^[d]) 
    else 1‘dO(tl(dsO))++1‘d2(ds2);
fun f3(dsO) = if dsO=[] 
    then 1‘dO(dsO) 
    else 1‘dO(tl(dsO));
fun f(dsO,[],[],[])=1‘dO(dsO^^[d])++1‘d1([])++1‘d2([])
  | f(dsO,[],[],d::ds2)=1‘dO(dsO)++1‘d1([])++1‘d2(ds2)
  | f(dsO,[],d::ds1,[])=1‘dO(dsO)++1‘d1(ds1)++1‘d2([])
  | f(dsO,r::rs,[],[])=1‘dO(dsO)++1‘d1([])++1‘d2([])
  | f(_,_,_,_) = empty;

awaitingINF 

idleINF

transReq::rq

 awaitingINF

 idleINF

idleINF

awaitingINF 

awaitingINF idleINF

 awaitingINF
idleINF

 awaitingINF 

idleINF

awaitingINF  awaitingINF

 idleINF

 idleINF

 rejReq::rs

 transRes::rs

rq^^[transReq]

if dsO=[] then rs^^[rejReq] else rs

if dsO=[] then rs^^[transRes]  else rs

rq

rq

rs
rs

rs
rs

rs

if rs=[] then 1‘[] else 1‘tl(rs)

transReq::rq
rq

st

f1(dsO,ds1,st)

1‘dO(dsO)
++1‘d1(ds1)

f2(dsO,ds2)

1‘dO(dsO)
++1‘d2(ds2)

dO(dsO)

f3(dsO)

dO(dsO)

f3(dsO)

1‘dO(dsO)
++1‘d1(ds1)++1‘d2(ds2)

f(dsO,rs,ds1,ds2)

Fig. 11: CPN modeling the CES servi
e spe
i�
ation, derived from [58℄

must be represented by a set of integer variables in the


ounter system. Sin
e the queue forTransfer has only

one kind of message, it is straightforwardly repla
ed by

a 
ounter stating the number of messages in the queue.

The se
ond queue revTransfer is more 
omplex to deal

with, sin
e it has two kinds of messages transRes and

rejReq. Following [58℄, we make the assumption that the

two kinds of messages never 
oexist in the queue. Then

the queue is modeled by two 
ounters, one for ea
h kind

of message. The validity of this assumption is 
he
ked in

se
tion 10.3.

The 
ounter system derived from the CPN model is

presented in �gure 12 (only typi
al parts are in
luded).

Variable bu�g represents the maximal size of the queue

forTransfer (it 
orresponds to parameter l in the CPN).

The system has a single lo
ation marking. Pla
e dsym-

bol in the CPN always 
ontains three tokens, whi
h are

queues 
ontaining a single type of element. Therefore, in

the 
ounter system, it is represented by three di�erent

variables d0, d1, d2. Sin
e some transitions have 
omplex

�ring modes, due to the fun
tions on ar
s and in guards,

they need to be split into di�erent transitions of the


ounter system (e.g. REJECTreq).

10.3 Model 
orre
tness

We 
he
k the modeling hypothesis about queues. To

ensure that two kinds of messages never 
oexist in the

queue forTransfer, we show that all rea
hable 
on�gura-

tions satisfy: either revTrans has a null value, or rejTrans

has a null value. This is expressed by the following re-

gion:

Region bad := {(!(revTrans)=0) && (!(rejTrans)=0)};
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model CES {

var outControl, inControl, forTrans, revTrans, rejTrans,

d0, d1, d2, buflg;

states marking;

transition TRANSFERreq := {

from := marking;

to := marking;

guard := outControl=0 && forTrans<buflg;

a
tion := outControl'=1, forTrans'=forTrans+1;

};

...

transition REJECTreq1 := {

from := marking;

to := marking;

guard := inControl=1 && d0=0;

a
tion := inControl'=0, rejTrans'=rejTrans+1;

};

transition REJECTreq2 := {

from := marking;

to := marking;

guard := inControl=1 && !d0=0;

a
tion := inControl'=0, d0'=d0-1;

};

}

Fig. 12: Des
ription in Fast of the CES servi
e

Region bad is then interse
ted with the rea
hability

set. The resulting region is empty, thus the modeling

hypothesis is 
orre
t. Note that no value is needed for

bu�g. This means that the result is valid for any value

of bu�g.

10.4 Veri�
ation with Fast

We automati
ally prove with Fast the 
hara
terization

of nodes in the rea
hability graph obtained by Liu and

Billington in [58℄. To do so, a region is de
lared for ea
h

of the 12 
on�gurations of the system when the bu�er

length l is 1 (mark1 to mark12 ). Additional 
on�gura-

tions are de�ned a

ording to the formula in [58, table 2,

page 287℄ (mark1n to mark4n). The rea
hability set is

supposed to be equal to the union of all these regions

(region fullOG). The s
ript in �gure 13 performs the

automati
 veri�
ation of this result.

The rea
hability set is 
omputed with 
y
les of length

2. The result is positive, i.e. the rea
hability set is as

the expe
ted. Sin
e variable bu�g is never set, the prop-

erty is automati
ally proved for any queue length. Fast

terminates in less than 30 se
onds.

10.5 Results

Fast has been used with su

ess to verify the 
hara
ter-

ization of 
on�gurations for a parametri
 lossy 
hannel

system. A major issue is the modeling of the queues by


ounters, whi
h requires some assumptions on the 
on-

tents of the queue. Fast proves the 
orre
tness of the

assumptions, and also the expe
ted property.

strategy forward {

Transitions t := {TRANSFERreq, TRANSFER
nf, REJECTindU,

TRANSFERind, ...};

Region mark1 := {outControl=0 && inControl=0 && forTrans=0 &&

revTrans=0 && rejTrans=0 && d0=0 && d1=0 &&

d2=0 && state=marking};

...

Region mark12 := {outControl=1 && inControl=1 && forTrans=0 &&

revTrans=0 && rejTrans=0 && d0=1 && d1=1 &&

d2=0 && state=marking};

Region marks1n := {forTrans<=buflg && d0=forTrans-1 &&

outControl=1 && inControl=0 && revTrans=0 &&

rejTrans=0 && d1=0 && d2=0 && state=marking};

...

Region marks4n := {forTrans<=buflg && d0=forTrans+1 &&

outControl=0 && inControl=1 && revTrans=0 &&

rejTrans=0 && d1=0 && d2=0 && state=marking};

Region fullOG := mark1 || ... || mark12 ||

marks1n || ... || marks4n;

Region rea
h := post*(mark1 && {buflg>0}, t, 2);

if (eqSet(fullOG && {buflg>0},rea
h)) then

print("fullOG OK");

endif

}

Fig. 13: The rea
hability set

10.6 Veri�
ation with Alv and Lash

We report our veri�
ation of the CES with Alv and

Lash. The tool Alv (same settings as in se
tion 8) does

not terminate in less than 20 minutes. The tool Lash

also does not terminate with only loop a

eleration.When

spe
ifying 
y
les of length 2 to be a

elerated (these are

dedu
ed from the feedba
k of Fast 
omputation), then

Lash terminates qui
kly. We have not experimented with

TReX on this example.

11 Con
lusion

In this paper, we have presented Fast, a tool for 
he
k-

ing safety properties on 
ounter systems. Fast is an im-

plementation of the �at a

eleration framework instan-

tiated to 
ounter systems. The tool implements state-of-

the-art te
hnologies su
h as automata-based representa-

tion of Presburger-de�nable sets, a

eleration of linear

fun
tions and automati
 sele
tion of interesting 
ir
uits

through dedi
ated heuristi
s and redu
tions. It follows

a 
lear design and ea
h step is justi�ed as rigorously as

possible, 
onsidering the whole problem is unde
idable.

We sket
hed in the paper all the theoreti
al founda-

tions of Fast, and des
ribed the ar
hite
ture of the tool.

We then des
ribed lengthy experiments 
arried out, and

we have 
ompared Fast with other tools having similar

goals. The main points of the tool are a very expres-

sive input model allowing many systems to be expressed

dire
tly, a powerful engine able to 
ompute the rea
ha-

bility set in most 
ases, the possibility to guide the tool

for 
omplex examples and a 
lear design.
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Many experiments have been su

essfully 
arried out.

Despite the fa
t that rea
hability sets of 
ounter systems

are not 
omputable, Fast terminates in about 75% of

our experiments. Fast has been the �rst tool to auto-

mati
ally verify the TTP, a 
omplex fault-tolerant pro-

to
ol. Fast has also been used to 
he
k a parametri


property of a lossy 
hannel system, the CES servi
e.

These performan
es are far better than those of simi-

lar tools. A
tually, 
omparison with tools like Alv and

Lash proves that ea
h me
hanism of Fast is of impor-

tan
e. Comparison with Alv demonstrates 
learly that


ir
uit a

eleration enhan
es greatly the termination of

the rea
hability set 
omputation, while 
omparison with

Lash shows that 
onsidering 
ir
uits of arbitrary length

(not restri
ted to loops) is of major importan
e for many

systems. Experiments made with Fast demonstrate that

the �at a

eleration framework is sound for the veri�
a-

tion of 
ounter systems.

Perspe
tives. Fast has proved to be e�
ient for 
ounter

systems with approximately 20 unbounded variables. The

next step is to s
ale up the te
hniques to wider systems.

We are 
urrently looking towards three dire
tions: (1)

improve the ndd representation, for example using 
a
he

systems; (2) improve the 
ir
uit sele
tion with new re-

du
tions and dynami
 dis
overy; (3) relax the exa
t 
om-

putation and mix widening and abstra
tion with a

eler-

ation. Another interesting issue is to investigate how to

de
ide ri
her properties on 
ounter systems, for example

liveness. First results have been obtained for LTL [31℄.

A
knowledgements. We thank Jonathan Billington, Guy Gal-

las
h and Philippe S
hnoebelen for their 
omments on ear-

lier versions of the paper. We are also grateful to Jonathan

Billington and Lin Liu for having provided us with the CPN

model of the CES servi
e, to Jean-Mi
hel Couvreur for giving

us advi
e for the implementation of shared automata, and to

Ales Smr
ka for adapting the Omega sour
e 
ode to re
ent


ompilers.

Referen
es

1. R. Alur, C. Cour
oubetis, N. Halbwa
hs, T. A. Hen-

zinger, P.-H. Ho, X. Ni
ollin, A. Olivero, J. Sifakis, and

S. Yovine. The algorithmi
 analysis of hybrid systems.

Theoreti
al Computer S
ien
e, 138(1):3�34, 1995.

2. A. Anni
hini, E. Asarin, and A. Bouajjani. Symboli


te
hniques for parametri
 reasoning about 
ounter and


lo
k systems. In Pro
. 12th Int. Conf. Computer Aided

Veri�
ation (CAV'2000), Chi
ago, IL, USA, July 2000,

volume 1855 of Le
ture Notes in Computer S
ien
e, pages

419�434. Springer, 2000.

3. A. Anni
hini, A. Bouajjani, and M. Sighireanu. TReX:

A tool for rea
hability analysis of 
omplex systems.

In Pro
. 13th Int. Conf. Computer Aided Veri�
ation

(CAV'2001), Paris, Fran
e, July 2001, volume 2102

of Le
ture Notes in Computer S
ien
e, pages 368�372.

Springer, 2001.

4. S. Bardin, A. Finkel, and J. Leroux. FASTer a

elera-

tion of 
ounter automata. In Pro
. 10th Int. Conf. Tools

and Algorithms for the Constru
tion and Analysis of Sys-

tems (TACAS'2004) Bar
elona, Spain, Mar. 2004, vol-

ume 2988 of Le
ture Notes in Computer S
ien
e, pages

576�590. Springer, 2004.

5. S. Bardin, A. Finkel, J. Leroux, and L. Petru

i.

FAST: Fast A

eleration of Symboli
 Transition systems.

In Pro
. 15th Int. Conf. Computer Aided Veri�
ation

(CAV'2003), Boulder, CO, USA, July 2003, volume 2725

of Le
ture Notes in Computer S
ien
e, pages 118�121.

Springer, 2003.

6. S. Bardin, A. Finkel, J. Leroux, L. Petru

i, and L. Woro-

bel. FAST user manual, 2003. 33 pages. Available at

www.lsv.ens-
a
han.fr/fast/.

7. S. Bardin, A. Finkel, J. Leroux, and P. S
hnoebelen. Flat

a

eleration in symboli
 model 
he
king. In Pro
. of the

3rd International Symposium on Automated Te
hnology

for Veri�
ation and Analysis (ATVA'2005) , Taipei, Tai-

wan, O
tober. 2005, volume 3707 of Le
ture Notes in

Computer S
ien
e, pages 474�488. Springer, 2005.

8. S. Bardin, A. Finkel, É. Lozes, and A. Sangnier. From

pointer systems to 
ounter systems using shape analy-

sis. In Pro
. 5th Int. Workshop Automated Veri�
ation

of In�nite-State Systems (AVIS'2006), Vienna, Austria,

2006.

9. S. Bardin, J. Leroux, and G. Point. FAST Extended

Release. In Pro
. 18th Int. Conf. Computer Aided Veri-

�
ation (CAV'2006), Seattle, Washington, USA, August

2006, volume 4144 of Le
ture Notes in Computer S
ien
e,

pages 63�66. Springer, 2006.

10. S. Bardin and L. Petru

i. From pnml to 
ounter sys-

tems for a

elerating Petri nets with fast. In Pro
. of

the Workshop on Inter
hange Formats for Petri Nets (at

ICATPN 2004), pages 26�40, June 2004.

11. C. Bartzis and T. Bultan. E�
ient symboli
 representa-

tions for arithmeti
 
onstraints in veri�
ation. Int. J. of

Foundations of Computer S
ien
e, 14(4):605�624, 2003.

12. C. Bartzis and T. Bultan. Widening arithmeti
 au-

tomata. In Pro
. 16th Int. Conf. Computer Aided Ver-

i�
ation (CAV 2004), , Boston, Massa
hussetts , July

2004, volume 3114 of Le
ture Notes in Computer S
i-

en
e, pages 321�333. Springer, 2004.

13. B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Pe-

tit, L. Petru

i, and Ph. S
hnoebelen. Systems and Soft-

ware Veri�
ation. Model-Che
king Te
hniques and Tools.

Springer, 2001.

14. B. Bérard and L. Fribourg. Rea
hability analysis of

(timed) Petri nets using real arithmeti
. In Pro
.

10th Int. Conf. Con
urren
y Theory (CONCUR'99),

Eindhoven, The Netherlands, Aug. 1999, volume 1664

of Le
ture Notes in Computer S
ien
e, pages 178�193.

Springer, 1999.

15. L. Berman. Pre
ise bounds for Presburger arithmeti


and the reals with addition: Preliminary report. In

Pro
. 18th IEEE Symp. Foundations of Computer S
i-

en
e (FOCS'77), Providen
e, RI, USA, O
t.-Nov. 1977,

pages 95�99. IEEE, 1977.

16. J. Billington, S. Christensen, K. van Hee, E. Kindler,

O. Kummer, L. Petru

i, R. Post, C. Stehno, and M. We-

ber. The Petri Net Markup Language: Con
epts, te
hnol-

ogy and tools. In Pro
. 24th Int. Conf. Appli
ation and



Sébastien Bardin et al.: FAST: A

eleration from theory to pra
ti
e 21

Theory of Petri Nets (ICATPN'2003), Eindhoven, The

Netherlands, June 2003, volume 2679 of Le
ture Notes in

Computer S
ien
e, pages 483�505. Springer, 2003.

17. J. Billington, G. E. Gallas
h, and L. Petru

i. FAST ver-

i�
ation of the 
lass of stop-and-wait proto
ols modelled

by 
oloured Petri nets. Nordi
 Journal of Computing,

pages 37�55, 2005. To appear.

18. J. Billington, G. E. Gallas
h, and L. Petru

i. Transform-

ing 
ouloured Petri nets to 
ounter systems for paramet-

ri
 veri�
ation: A stop-and-wait proto
ol 
ase study. In

Pro
. 2nd workshop on MOdel-based Methodologies for

Pervasive and Embedded Software (MOMPES'05, satel-

lite of ACSD'05), Rennes, Fran
e, volume 39, pages 37�

55. TUCS general publi
ation, June 2005.

19. B. Boigelot. Symboli
 Methods for Exploring In�nite

State Spa
es. PhD thesis, Université de Liège, 1998.

20. B. Boigelot. On iterating linear transformations over re
-

ognizable sets of integers. Theoreti
al Computer S
ien
e,

309(2):413�468, 2003.

21. B. Boigelot and P. Wolper. Symboli
 veri�
ation with

periodi
 sets. In Pro
. 6th Int. Conf. Computer Aided

Veri�
ation (CAV'94), Stanford, CA, USA, June 1994,

volume 818 of Le
ture Notes in Computer S
ien
e, pages

55�67. Springer, 1994.

22. A. Bouajjani and A. Mer
eron. Parametri
 veri�
ation of

a group membership algorithm. In Pro
. 7th Int. Symp.

Formal Te
hniques in Real-Time and Fault-Tolerant Sys-

tems (FTRTFT'2002), Oldenburg, Germany, Sep. 2002,

volume 2469 of Le
ture Notes in Computer S
ien
e, pages

311�330. Springer, 2002.

23. A. Boudet and H. Comon. Diophantine equations, Pres-

burger arithmeti
 and �nite automata. In Pro
. 21st Int.

Coll. on Trees in Algebra and Programming (CAAP'96),

Linköping, Sweden, Apr. 1996, volume 1059 of Le
ture

Notes in Computer S
ien
e, pages 30�43. Springer, 1996.

24. V. Bruyère, G. Hansel, C. Mi
haux, and R. Villemaire.

Logi
 and p-re
ognizable sets of integers. Bull. Belg.

Math. So
., 1(2):191�238, Mar. 1994.

25. T. Bultan and T. Yavuz-Kahve
i. A
tion language veri-

�er. In Pro
. 16th IEEE Int. Conf. Automated Software

Engineering (ASE 2001), 26-29 November 2001, Coron-

ado Island, San Diego, CA, USA, pages 382�386. IEEE

Computer So
iety, 2001.

26. E. M. Clarke, O. Grumberg, and D. A. Peled. Model

Che
king. MIT Press, 1999.

27. H. Comon and Y. Jurski. Multiple 
ounters automata,

safety analysis, and Presburger arithmeti
. In Pro
.

10th Int. Conf. Computer Aided Veri�
ation (CAV'98),

Van
ouver, BC, Canada, June-July 1998, volume 1427

of Le
ture Notes in Computer S
ien
e, pages 268�279.

Springer, 1998.

28. J.-M. Couvreur. A bdd-like implementation of an au-

tomata pa
kage. In Pro
. 9th Int. Conf. Implementation

and Appli
ation of Automata (CIAA'2004), Kingston,

Canada, July 2004, volume 3317 of Le
ture Notes in

Computer S
ien
e, pages 310�311. Springer, 2004.

29. Ch. Darlot, A. Finkel, and L. Van Begin. About Fast

and TReX a

elerations. In Pro
eedings of the 4th Inter-

national Workshop on Automated Veri�
ation of Criti
al

Systems (AVoCS'04), volume 128 of Ele
troni
 Notes in

Theoreti
al Computer S
ien
e, London, UK, Aug.-Sept.

2004. Elsevier S
ien
e Publishers.

30. G. Delzanno, J.-F. Raskin, and L. Van Begin. Covering

sharing trees: a 
ompa
t data stru
ture for parameter-

ized veri�
ation. Journal of Software Tools for Te
hnol-

ogy Transfer, 5(2�3):268�297, 2004.

31. S. Demri, A. Finkel, V. Goranko, and G. van Drimme-

len. Towards a model-
he
ker for 
ounter systems. In

Pro
. 4th Int. Symp. Automated Te
hnology for Veri�
a-

tion and Analysis (ATVA'2006), volume 4218 of Le
ture

Notes in Computer S
ien
e, pages 493�507. Springer,

2006.

32. C. Dufourd, A. Finkel, and P. S
hnoebelen. Reset

nets between de
idability and unde
idability. In Pro
.

25th Int. Coll. Automata, Languages, and Programming

(ICALP'98), Aalborg, Denmark, July 1998, volume 1443

of Le
ture Notes in Computer S
ien
e, pages 103�115.

Springer, 1998.

33. E. A. Emerson and K. S. Namjoshi. On model 
he
k-

ing for non-deterministi
 in�nite-state systems. In Pro
.

13th IEEE Symp. Logi
 in Computer S
ien
e (LICS'98),

Indianapolis, IN, USA, June 1998, pages 70�80. IEEE

Comp. So
. Press, 1998.

34. J. Esparza, A. Finkel, and R. Mayr. On the veri�
ation of

broad
ast proto
ols. In Pro
. 14th IEEE Symp. Logi
 in

Computer S
ien
e (LICS'99), Trento, Italy, July 1999,

pages 352�359. IEEE Comp. So
. Press, 1999.

35. Fast homepage. http://www.lsv.ens-
a
han.fr/

fast/.

36. A. Finkel. A generalization of the pro
edure of karp and

miller to well stru
tured transition systems. In Pro
.

14th Int. Coll. Automata, Languages, and Programming

(ICALP'87), Karlsruhe, FRG, July 1987, volume 267

of Le
ture Notes in Computer S
ien
e, pages 499�508.

Springer, 1987.

37. A. Finkel and J. Leroux. How to 
ompose Presburger-

a

elerations: Appli
ations to broad
ast proto
ols. In

Pro
. 22nd Conf. Found. of Software Te
hnology and

Theor. Comp. S
i. (FST&TCS'2002), Kanpur, India,

De
. 2002, volume 2556 of Le
ture Notes in Computer

S
ien
e, pages 145�156. Springer, 2002.

38. A. Finkel, S. Purushothaman Iyer, and G. Sutre. Well-

abstra
ted transition systems: Appli
ation to FIFO au-

tomata. Information and Computation, 181(1):1�31,

2003.

39. A. Finkel and G. Sutre. De
idability of rea
hability prob-

lems for 
lasses of two 
ounters automata. In Pro
. 17th

Ann. Symp. Theoreti
al Aspe
ts of Computer S
ien
e

(STACS'2000), Lille, Fran
e, Feb. 2000, volume 1770

of Le
ture Notes in Computer S
ien
e, pages 346�357.

Springer, 2000.

40. L. Fribourg. Petri nets, �at languages and linear arith-

meti
. Invited le
ture. In M. Alpuente, editor, Pro
. 9th

Int. Workshop. on Fun
tional and Logi
 Programming

(WFLP'2000), Beni
assim, Spain, Sept. 2000, pages

344�365, 2000. Pro
eedings published as Ref. 2000.2039,

Universidad Polité
ni
a de Valen
ia, Spain.

41. L. Fribourg and H. Olsén. A de
ompositional approa
h

for 
omputing least �xed-points of Datalog programs

with Z-
ounters. Constraints, 2(3/4):305�335, 1997.

42. L. Fribourg and H. Olsén. Proving safety properties

of in�nite state systems by 
ompilation into Presburger

arithmeti
. In Pro
. 8th Int. Conf. Con
urren
y The-

ory (CONCUR'97), Warsaw, Poland, Jul. 1997, volume



22 Sébastien Bardin et al.: FAST: A

eleration from theory to pra
ti
e

1243 of Le
ture Notes in Computer S
ien
e, pages 213�

227. Springer, 1997.

43. V. Ganesh, S. Berezin, and D. L. Dill. De
iding pres-

burger arithmeti
 by model 
he
king and 
omparisons

with other methods. In Pro
. 4th Int. Conf. Formal

Methods in Computer Aided Design (FMCAD'02), Port-

land, OR, USA, nov. 2002, volume 2517 of Le
ture Notes

in Computer S
ien
e, pages 171�186. Springer, 2002.

44. G. Geeraerts, J.-F. Raskin, , and L. Van Begin. Ex-

pand, enlarge and 
he
k... made e�
ient. In S. K. Raj-

jamani and K. Etessami, editors, Pro
eedings of 17th In-

ternational Conferen
e on Computer Aided Veri�
ation

� (CAV 2005), number 3576 in Le
ture Notes in Com-

puter S
ien
e, pages 394�404. Springer, 2005.

45. S. Ginsburg and E. H. Spanier. Semigroups, Presburger

formulas and languages. Pa
i�
 J. Math., 16(2):285�296,

1966.

46. O. H. Ibarra. Reversal-bounded multi
ounter ma
hines

and their de
ision problems. J. ACM, 25:116�133, 1978.

47. O. H. Ibarra, J. Su, Z. Dang, T. Bultan, and R. A. Kem-

merer. Counter ma
hines and veri�
ation problems. The-

oreti
al Computer S
ien
e, 289(1):165�189, 2002.

48. K. Jensen. Coloured Petri Nets: Basi
 
on
epts, analy-

sis methods and pra
ti
al use. Volume 1: basi
 
on
epts.

Monographs in Theoreti
al Computer S
ien
e. Springer,

1992.

49. R. M. Karp and R. E. Miller. Parallel program s
hemata.

Journal of Computer and System S
ien
es, 3(2):147�195,

1969.

50. W. Kelly, W. Pugh, E. Rosser, and T. Shpeisman. Transi-

tive 
losure of in�nite graphs and its appli
ations. In 8th

Int. Wor. Languages and Compilers for Parallel Com-

puting (LCPC'95), Columbus, Ohio, USA, August 10-12,

1995, volume 1033 of Le
ture Notes in Computer S
ien
e,

pages 126�140. Springer, 1995.

51. Y. Kesten, O. Maler, M. Mar
us, A. Pnueli, and E. Sha-

har. Symboli
 model 
he
king with ri
h assertional lan-

guages. Theoreti
al Computer S
ien
e, 256(1�2):93�112,

2001.

52. F. Klaedtke. On the automata size for presburger arith-

meti
. In Pro
. 19th Annual IEEE Symposium on Logi


in Computer S
ien
e (LICS'04), Turku, Finland July

2004, pages 110�119. IEEE Comp. So
. Press, 2004.

53. N. Klarlund, A. Møller, and M. I. S
hwartzba
h. MONA

implementation se
rets. Int. J. of Foundations Computer

S
ien
e, 13(4):571�586, 2002.

54. H. Kopetz and G. Grünsteidl. A time trigerred proto
ol

for fault-tolerant real-time systems. In IEEE 
omputer,

pages 14�23, 1999.

55. Lash homepage. http://www.montefiore.ulg.a
.be/

~boigelot/resear
h/lash/.

56. J. Leroux and G. Sutre. On �atness for 2-dimensional

ve
tor addition systems with states. In Pro
. 15th Int.

Conf. Con
urren
y Theory (CONCUR'04), London, UK,

Aug.-Sep. 2004, volume 3170 of Le
ture Notes in Com-

puter S
ien
e, pages 402�416. Springer, 2004.

57. J. Leroux and G. Sutre. Flat 
ounter automata almost

everywhere! In Pro
. of the 3rd International Symposium

on Automated Te
hnology for Veri�
ation and Analysis

(ATVA'2005) , Taipei, Taiwan, O
tober. 2005, volume

3707 of Le
ture Notes in Computer S
ien
e, pages 489�

503. Springer, 2005.

58. L. Liu and J. Billington. Ta
kling the in�nite state spa
e

of a multimedia 
ontrol proto
ol servi
e spe
i�
ation. In

Pro
. 23rd Int. Conf. Appli
ation and Theory of Petri

Nets (ICATPN'2002), Adelaide, Australia, June 2002,

volume 2360 of Le
ture Notes in Computer S
ien
e, pages

273�293. Springer, 2002.

59. A. Mandel and I. Simon. On �nite semigroups of ma-

tri
es. Theoreti
al Computer S
ien
e, 5(2):101�111, O
t.

1977.

60. E. W. Mayr. Persiten
e of Ve
tor Repla
ement Systems

is de
idable. A
ta Informati
a, 15:309�318, 1981.

61. Mona homepage. http://www.bri
s.dk/mona/index.

html.

62. Omega homepage. http://www.
s.umd.edu/proje
ts/

omega/.

63. M. Presburger. Uber die volstandigkeit eines gewissen

systems der arithmetik ganzer zahlen, in wel
hem die

addition als einzige operation hervortritt. In C. R. 1er


ongrès des Mathémati
iens des pays slaves, Varsovie,

pages 92�101, 1929.

64. T. Rybina and A. Voronkov. Brain: Ba
kward rea
h-

ability analysis with integers. In Pro
. 9th Int.

Conf. Algebrai
 Methodology and Software Te
hnology

(AMAST'2002), Saint-Gilles-les-Bains, Reunion Island,

Fran
e, Sep. 2002, volume 2422 of Le
ture Notes in Com-

puter S
ien
e, pages 489�494. Springer, 2002.

65. P. Wolper and B. Boigelot. An automata-theoreti
 ap-

proa
h to Presburger arithmeti
 
onstraints. In Pro
.

2nd Int. Symp. Stati
 Analysis (SAS'95), Glasgow, UK,

Sep. 1995, volume 983 of Le
ture Notes in Computer S
i-

en
e, pages 21�32. Springer, 1995.

66. P. Wolper and B. Boigelot. Verifying systems with in-

�nite but regular state spa
es. In Pro
. 10th Int. Conf.

Computer Aided Veri�
ation (CAV'98), Van
ouver, BC,

Canada, June-July 1998, volume 1427 of Le
ture Notes

in Computer S
ien
e, pages 88�97. Springer, 1998.

67. P. Wolper and B. Boigelot. On the 
onstru
tion of au-

tomata from linear arithmeti
 
onstraints. In Pro
. 6th

Int. Conf. Tools and Algorithms for the Constru
tion and

Analysis of Systems (TACAS'2000), Berlin, Germany,

Mar.-Apr. 2000, volume 1785 of Le
ture Notes in Com-

puter S
ien
e, pages 1�19. Springer, 2000.

68. T. Yavuz-Kahve
i, C. Bartzis, and T. Bultan. A
tion lan-

guage veri�er, extended. In Pro
. 17th Int. Conf. Com-

puter Aided Veri�
ation (CAV 2005), Edinburgh, S
ot-

land, UK, July 6-10, 2005, volume 3576 of Le
ture Notes

in Computer S
ien
e, pages 413�417. Springer, 2005.


