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Abstrat. Fast is a tool for the analysis of systems ma-

nipulating unbounded integer variables. We hek safety

properties by omputing the reahability set of the sys-

tem under study. Even if this reahability set is not ne-

essarily reursive, we use innovative tehniques, namely

symboli representation, aeleration and iruit sele-

tion, to inrease onvergene. Fast has proved to per-

form very well on ase studies. This paper desribes

the tool, from the underlying theory to the arhiteture

hoies. Finally, Fast apabilities are ompared with

those of other tools. A range of ase studies from the

literature is investigated.

Keywords: ounter systems, in�nite reahability set,

symboli representation, aeleration

1 Introdution

Automati veri�ation of reative systems is a major

�eld of researh. A popular way of modeling suh sys-

tems is by means of onurrent automata with shared

variables. The automata represent the ontrol struture

of the system, while variables enode data. Many lasses

of suh extended automata have been studied, onsider-

ing variables ranging over integers (ounters), real num-

bers (time), words (queues, staks) and so on.

The semantis of suh an extended automaton is given

by a transition system (C,−→), de�ned by a set of on�g-

urations C and a transition relation −→. A on�guration

c ∈ C is a tuple of ontrol loations (one for eah om-

ponent) and a valuation for eah variable of the system.

⋆
This paper is mainly based on results presented at CAV 2003,

TACAS 2004 and ATVA 2005.

The transition relation −→ is a binary relation over the

set of on�gurations. A on�guration c′ is reahable from

a on�guration c if and only if (c, c′) ∈−→∗
, where −→∗

de-

notes the re�exive and transitive losure of −→. The set

of on�gurations reahable from the on�guration c0 is

alled the reahability set from c0.

Safety properties are expressed in terms of �safe reah-

able on�gurations�. They are the most ommonly en-

ountered properties in pratie, and allow spei�ation

of important properties suh as the absene of deadlok,

apaity over�ow and division by zero.

The lass of ounter systems, where variables range

over integers, appears to be interesting. From a prati-

al point of view, these systems allow the modeling of,

for example, ommuniation protools [18℄, multi-thread

programs or programs with pointers [8℄. From a theoret-

ial view, many well-known lasses appear to be enom-

passed by ounter systems, like Minsky mahines, Petri

nets extended with reset/ inhibitor/ transfer ars [32,

39℄, reversal-bounded ounter mahines [47℄ and broad-

ast protools [33,34℄.

The ounterpart of the expressiveness of ounter sys-

tems is that only two ounters with inrement, dere-

ment and test-to-zero an simulate a Turing mahine.

Then heking even basi safety properties of ounter

systems is undeidable. Many works have been onduted

on identifying deidable sublasses, like Petri nets [60℄

and reversal-bounded ounter mahines [46,47℄. How-

ever few of these results have been implemented, mainly

for two reasons. First sine eah result applies for a re-

strited sublass, there is no generi method for a large

lass of ounter systems. Seond, these algorithms are

often ine�ient in pratie.
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1.1 The tool Fast

In this paper, we present the tool Fast [5,9℄, designed to

hek safety properties on ounter systems. We made the

hoie to onsider a very large sublass of ounter sys-

tems, namely linear ounter systems, for whih heking

safety properties is undeidable.

The safety properties are expressed in terms of Pres-

burger onstraints over ounters. They stritly inlude

the usual reahability properties, expressed in terms of

ontrol loation or upward losed / onvex sets of on-

�gurations.

The tool Fast has four main advantages:

Sine linear ounter systems and Presburger onstraints

are very expressive, Fast an be applied to a large

spetrum of appliations and the tool is not tied to

a partiular spei� ase-study.

Despite the inherent theoretial limitations, a powerful

engine based on reently developed tehniques (ael-

eration, �attening, redution) allows Fast to hek

the orretness of the system in most pratial ases.

Fast design is fully based on a lear theoretial frame-

work (�at aeleration). Abilities and limits of the

tool are learly identi�ed: Fast is omplete for the

lass of �attable systems [7℄. Moreover sine many

deidable sublasses of ounter systems are �attable,

Fast provides a uni�ed veri�ation algorithm for all

these lasses [56,57℄.

Finally, in ase the automati veri�ation fails, the user

an guide the tool using a sript language. We think

that this is an important feature sine termination

annot be guaranteed.

1.2 Theoretial foundations

Symboli model heking. Fast follows the model hek-

ing approah [13,26℄, based on the exhaustive explo-

ration of the reahability set. However, sine one manip-

ulates potentially in�nite sets of on�gurations, alled

regions, the model heking must be �symboli�. A sym-

boli representation must support the following opera-

tions: (1) post- and/or pre-image omputation, (2) union

to ollet all reahable on�gurations, (3) inlusion to

test for �xpoint. The most popular symboli represen-

tations are based on regular languages: these are quite

expressive and automata-theoretial data strutures pro-

vide well-known and e�ient algorithms performing the

previous operations. With these ingredients, it beomes

possible to launh a �xpoint omputation for forward

or bakward reahability sets (see for example [51℄), as

exempli�ed in proedure 1.

Aeleration. In pratie, an iterative symboli reaha-

bility set omputation similar to the one of proedure 1

will surely fail. A solution to help onvergene is to use

proedure reah1(x0)
input: symboli on�guration x0.

1: x← x0

2: while post(x) 6⊑ x do

3: x← post(x) ⊔ x

4: end while

5: return x

Proedure 1: standard symboli proedure

aeleration tehniques. Aeleration onsists of omput-

ing in one step the e�et of the transitive losure of a

transition or a sequene of transitions.

First ideas of aeleration an be found in the over-

ing tree of Petri nets by Karp and Miller in 1969 [49℄,

extended by Finkel to well-strutured transitions sys-

tems [36℄. The �rst paper on the aeleration of ounter

systems is probably due to Boigelot and Wolper in [21℄,

onsidering funtions with inrement/ derement/ reset

and onvex guards. Sine then, lots of work has been

ahieved in this area, for example [2,14,41,42,50℄. Re-

sults of [20,37,66℄ extend those of Wolper and Boigelot

to linear funtions with Presburger-de�nable guards.

Flat aeleration framework. An e�ient aeleration

algorithm is not su�ient to ompute the reahability

set. The question is how to �nd out the iruits (se-

quenes of transitions) of the system, whose aeleration

will lead to a suessful omputation of the reahability

set. This issue was not learly treated until we intro-

dued the �at aeleration framework [7℄. We proposed

the notion of �attening, and showed that �at aeler-

ation omputes the reahability set if and only if the

system is �attable. Moreover, we designed a omplete

heuristi for �attable systems, and generi optimizations

alled redutions. The framework is artiulated around

four key points: (1) the system under onsideration, (2)

the symboli representation, (3) the aeleration algo-

rithm and (4) a heuristi to selet iruits to be aeler-

ated.

The tool Fast follows stritly the �at aeleration

framework. The systems analyzed (linear ounter sys-

tems with �nite monoid) and the orresponding ael-

eration algorithms an be found in [37,66℄. The sym-

boli representation is based upon the automata repre-

sentation of semi-linear sets (see [23,67℄). The seletion

heuristi is the one desribed in [7℄ with the redution

presented in [37℄.

Even though the reahability set of a linear ounter

system is not Presburger de�nable in general, in pra-

tie the systems manipulated are regular enough to have

a Presburger de�nable reahability set. The tehniques

presented throughout the paper allow for model heking

many ounter systems (more than forty tests).

Moreover, Leroux and Sutre have shown in [56,57℄

that Fast is guaranteed to terminate for many sub-
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lasses of ounter systems: 2-ounters VASS, reversal-

bounded ounter mahines, lossy VASS, BPP, Cyli

Petri nets and other sublasses.

1.3 Other tools for ounter systems

The following approahes and tools have been developed

to hek orretness of ounter systems.

Reahability set omputation. ToolsAlv [25,68℄,Lash [55℄

and TReX [3℄ implement symboli methods to ompute

the forward reahability set of ounter systems.Alv pro-

vides two di�erent symboli representations for integer

vetors: Presburger formula or automata as in Fast. A-

eleration is available for the formula-based representa-

tion [50℄, but not for the automata-based representation.

The tool is mostly used in bakward omputation or in

approximated forward omputation [12℄. Lash [55℄ foun-

dations are lose to those of Fast, with similar symboli

representations and aeleration algorithms. The main

di�erene is that Lash does not implement any iruit

searh and the user has to provide iruits to the tool.

TReX [3℄ follows the same framework but uses rather

di�erent tehnologies. A omparison of Alv, Fast, Lash

and TReX is presented in setion 8.

Co-reahability set omputation. One of the most inter-

esting results for ounter systems veri�ation is the om-

putability of the o-reahability set of monotoni VASS:

monotoni VASS is a large sublass, e�ient symboli

representations have been developed and interesting ase

studies have been onduted. We an ite the work on

overing sharing trees of Delzanno, Raskin and Van Be-

gin [30℄ and the tool brain by Voronkov and Rybina [64℄.

These approahes are more spei� than the one of Fast:

omputation is bakward only

1

, properties are redued

to upward-losed sets and systems are monotoni. For

example ase-studies of setion 9 and setion 10 ould

not have been handled with these tools.

Reahability set approximation. Finally, some approahes

relax the exatness of omputation to ensure omputa-

tion termination or at least simpler omputational steps.

However the superset obtained in the end may not be

tight enough to deide the property. We an ite the

lassi tool Hyteh [1℄, as well as the abstrat-hek

and re�ne tehnique of Raskin et al. [44℄ to ompute

iteratively overing trees of monotoni Petri nets.

1.4 Contribution

This paper provides both an overview of the main re-

sults obtained on Fast and on aeleration of ounter

systems [4,5,7,9,10,29,37,56,57℄ as well as some origi-

nal ontributions: an up-to-date desription of Fast, an

1

Fast an also be used for bakward reahability omputations.

in-depth experimental omparison with similar tools, the

veri�ation of the TTP protool (a short desription of

this work was proposed in [4℄) and the veri�ation of the

Capaity Exhange Signaling protool.

1.5 Outline

The sequel of the paper is strutured as follows. Eah

point of the Fast framework is presented in setions 2

to 5: ounter systems (setion 2), symboli representa-

tion (setion 3), aeleration (setion 4) and seletion

heuristi (setion 5). After this overview of the theoret-

ial foundations, setion 6 presents the tool Fast. Ex-

periments are presented in setion 7, omparisons with

tools Alv, Lash and TReX an be found in setion 8

and two ase-studies are developed in setions 9 and 10.

2 Presburger Arithmeti And Counter Systems

2.1 Sets

Given two sets E and F , we denote by E∪F , E∩F , E\F
and E×F , the union, the intersetion, the di�erene and

the Cartesian produt of E and F . The set Ei, i > 0, is
de�ned by E1 = E and En+1 = E×En

. We write E ⊆ F

if E is a subset of F . The empty set is denoted ∅. Given
two sets E, X suh that E ⊆ X , the omplement of E

(in X) is denoted by Ē and is de�ned as Ē = X\E. The

ardinal of a �nite set X is written |X |.

2.2 Relations

A relation R between E and F is a subset R ⊆ E ×
F . We write xR x′

whenever (x, x′) ∈ R. The inverse

relation of R, written R−1 ⊆ F×E, is de�ned by x′R−1x

if and only if xRx′
. The image of x ∈ E by R is the

set R(x) ⊆ F de�ned by R(x) = {x′ ∈ F |xRx′}. The
de�nition is extended to a set X ⊆ E by R(X) = {x′ ∈
F |∃x ∈ X.xRx′}. Given two relations R1 ⊆ E × F and

R2 ⊆ F × G, the omposition of R1 and R2, written

R1 • R2 ⊆ E × G, is de�ned by: x(R1 • R2)x
′′
if xR1x

′

and x′R2x
′′
for some x′ ∈ F .

A binary relation R on E is a relation between E and

itself. The identity relation on E is the binary relation

IdE = {(x, x)| x ∈ E}. For R on E, we denote by Ri

the relation de�ned indutively by: R0
is the identity

relation on E and Rn+1 = R • Rn
. The re�exive and

transitive losure of R, denoted R∗
, is then de�ned by

R∗ =
⋃

n≥0 Rn
.

2.3 Numbers and matries of numbers

Let Z (resp. N) denote the set of integers (resp. non-

negative integers). We denote by Mn(Z) (resp. Mn(N))
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q1 q2

x′ = x + 1 ∧ y′ = y /∗ a1 ∗/

x 6= y ∧ y′ = y + x ∧ x′ = x /∗ a2 ∗/

y′ = y + 2∧
x′ = x− 1
/∗ a3 ∗/

Fig. 1: A simple ounter system

the set of square matries of size n over Z (resp. N). The

identity matrix of size n is denoted 1n. The max-norm

of a matrix (resp. vetor), written ||·||∞, is the maximal

absolute value appearing in the matrix (resp. vetor).

2.4 Presburger arithmeti

Presburger arithmeti [63℄ is the �rst order additive the-

ory over the integers 〈Z,≤, +〉. Satis�ability and valid-

ity of Presburger arithmeti are both deidable. A Pres-

burger formula is denoted by φ(−→x ) where

−→
x is a n-

dim vetor of free variables (

−→
x [i] is the i-th omponent

of

−→
x ). The set of vetors de�ned by suh a formula

φ(−→x ), i.e, the set of vetors satisfying φ, is denoted byq
φ(−→x )

y
⊆ Z

n
. A set X ⊆ Z

n
is said to be Presburger-

de�nable if there exists a Presburger formula φ(−→x ) suh
that X =

q
φ(−→x )

y
.

2.5 Counter systems

A ounter system is a �nite ontrol struture (automa-

ton

2

) extended with m integer variables whose values

an be modi�ed by ations denoted by a Presburger for-

mula. Fig. 1 gives an example of a ounter system.

De�nition 1 (Counter system). Let m be a non-

negative integer. A m-dim ounter system S is a tuple

S = (Q, T, m), where Q is a �nite non empty set of loa-

tions, and T is a �nite set of transitions (q, φ, q′) where
q, q′ ∈ Q and φ(−→x ,−→x ′) is a Presburger formula over 2m

variables.

Given a transition t = (q, φ, q′) ∈ T , we de�ne the

funtions α, β and l by α(t) = q, β(t) = q′ and l(t) = φ.

Semantis. As previously mentioned, the semantis of a

ounter system is given by a transition system (CS ,
T
−→).

The set of on�gurations CS of a ounter system S is

Q×Z
m
. The transition relation

T
−→ is de�ned as follows.

The semantis of a transition t ∈ T is given by the re-

lation

t
−→ over CS de�ned by: (q,−→x )

t
−→ (q′,−→x ′) if q =

α(t), q′ = β(t) and (−→x ,−→x ′) ∈ Jl(t)K. This de�nition an

be extended to the set T ∗
of sequenes of transitions. Let

us denote by ε the empty word. Then

ε
−→

def

= IdCS
and

t·π
−→

def

=
t

−→ •
π

−→. We also extend −→ to any language

2

In ase of multi-omponent systems, we onsider the synhro-

nized produt automaton.

L ⊆ T ∗
by

L
−→

def

=
⋃

π∈L

π
−→. The de�nition of

T
−→ fol-

lows diretly. The relation

T∗

−→ is alled the reahability

relation.

Remark 1. The analysis of a ounter system with |Q|
loations and m ounters an always be redued to the

analysis of a system S′ = ({q′}, T ′, m+1) with only one

loation and m + 1 variables, by enoding the ontrol

struture in a new ounter xQ.

Notation. Whenever S is impliitly known, it is omitted

in the notation.

2.6 Reahability problems

For any X ⊆ C and any L ⊆ T ∗
, the set post(L, X) of

on�gurations reahable from X following sequenes of

transitions in L is de�ned by post(L, X) = (
L
−→)(X) =

{x′ ∈ C| ∃x ∈ X ; (x, x′) ∈
L

−→}. We fous on two parti-

ular sets: the set post(T, X) of all on�gurations reah-
able in one step from X , also denoted by post(X); and
the set post(T ∗, X) of all on�gurations reahable from
X (the reahability set of X), also denoted by post∗(X).

Given an initial set of on�gurations X0, heking a

safety property P an be done by: (1) omputing post∗(X0),
(2) deiding whether post∗(X0) ⊆ P holds or not. We

fous here on the reahability set omputation, whih is

the entral issue. Sine ounter systems generalize Min-

sky mahines (ounters with inrement, derement and

test-to-zero), their reahability sets are not reursive in

general. Then the best we an hope for are orret proe-

dures, with no theoretial guarantee of termination but

e�ient on large sublasses and pratial ase-studies.

A symmetrial approah is to ompute in a bakward

manner the o-reahability set pre∗(P̄ ) = (
L
−→)−1(P̄ ) and

hek that X0∩pre∗(P̄ ) is empty. In the following we al-

ways onsider forward omputation, but our results an

be straightforwardly adapted to bakward omputation.

3 Automata-Based Symboli Representation

The symboli model heking approah was �rst devel-

oped to verify large but still �nite-state systems. The

key idea is to manipulate sets of states diretly through

a onise symboli representation (suh as BDDs) rather

than manipulate enumerations of onrete states. The

approah naturally extends to in�nite state veri�ation

using more omplex symboli representations, suh as

automata.

In the ase of ounter systems, the lass of Presburger-

de�nable sets is naturally used as the symboli represen-

tation, sine: (1) the union of two Presburger-de�nable

sets is e�etively Presburger-de�nable, (2) assuming the
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set X is Presburger-de�nable and S is a ounter system,

then postS(X) is Presburger-de�nable, (3) we an hek

if X ⊆ X ′
for any two Presburger-de�nable sets X and

X ′
.

3.1 Number Deision Diagrams (ndd)

The e�ieny of the algorithms based on Presburger de-

�nable sets depends strongly on the symboli represen-

tation used for manipulating these sets. Di�erent teh-

niques [43℄ and tools have been developed for manipulat-

ing Presburger-de�nable sets : by working diretly on the

Presburger formulas [52℄ (implemented in Omega [62℄),

by using semi-linear sets [45℄ (implemented in Brain

[64℄), or by using Number Deision Diagrams [23,65℄

(ndd, implemented in Fast [5℄, Lash [55℄ and Mona

[53℄).

The ndd representation is obtained by remarking that

given a basis r ≥ 2 of deomposition, an integer, or more

generally an integer vetor in N
m
, an be deomposed

into a word over the alphabet Σr,m = {0 . . . r − 1}m
.

Then a �regular� set of integer vetors an be deom-

posed into a regular language L ⊆ Σ∗
r,m, and it an

be naturally represented by an automaton over Σr,m.

Suh an automaton is alled a ndd [23,65℄. An example

is presented in �gure 2. For more detailed information

on ndd and automata-theoreti representations of Pres-

burger sets, the reader is referred to [23,65,67℄.

(1,1,0)

(0,0,1)

(1,1,1)
(0,1,0) (0,0,0)

(1,0,1)
(1,1,0)
(0,1,1)

(0,0,1)
(1,0,0)

(0,1,0)(1,0,0)(0,1,1)(1,0,1)(0,0,0) (1,1,1)

CARRY

BAD

Fig. 2: An automaton to represent {(x, y, z)|x + y = z}
(least digit �rst)

This approah is very fruitful sine set-theoretial

operations orrespond to well-known operations on au-

tomata (intersetion for onjuntion, omplementation

for negation, projetion for quanti�ation and so on).

Presburger-de�nable sets and Presburger-de�nable rela-

tions (on 2m variables (−→x ,−→x ′)) are anonially repre-

sented (uniqueness of the minimal form w.r.t. the num-

ber of nodes of the ndd). The post- and pre-operations for

arbitrary ndd-de�nable relations are also quite straight-

forward, sine ndd-de�nable sets are losed by image of

suh relations.

Automata representations are well-suited for appli-

ations that require a lot of boolean manipulations suh

as model-heking. For these appliations, ndd have two

ruial advantages over Presburger formula and semi-

linear sets. First, a minimization proedure for automata

provides a anonial representation for ndd-de�nable sets

(a set represented by a ndd). This means that the ndd

representing a given set only depends on this set and

not on the way it is omputed. On the other hand, Pres-

burger formulas and semi-linear sets lak anoniity. As

a diret onsequene, a set that possesses a simple rep-

resentation ould unfortunately be represented in an un-

duly ompliated way. Seond, deiding if a given vetor

of integers is in a given set an be performed in linear

time with ndd, while it is at least NP-hard [15,45℄ with

Presburger formula and semi-linear sets.

Remark 2. In pratie, in order to derease the number

of output transitions in the ndd, the basis r is set to 2
(binary deomposition) and the alphabet {0, 1}m

is re-

dued to {0, 1} thanks to a serialization [67℄. This an be

done without any loss of expressivity sine Presburger-

de�nable sets are exatly the sets that an be represented

by ndd in any basis r of deomposition. People interested

in the expressive power of ndd should onsult [24℄.

4 Reahability Computation For Flat Counter

Systems

Proedure 1 only terminates on bounded systems [7℄: any

on�guration x ∈ post∗(X) must be reahable from a

on�guration x0 ∈ X by a path x0
π
−→ x where |π| is

bounded independently of x and x0. In pratie systems

are rarely bounded. For example any linear ounter sys-

tem (S, X0) suh that post∗(X0) is in�nite while X0 is �-

nite (e.g. a system with a iruit adding one to a ounter)

is not bounded. A notable exeption is the lass of mono-

toni Petri nets, onsidering bakward omputation from

upward-losed sets of on�gurations.

Proedure 1 an be improved by using an algorithm

post_star that omputes from a symboli representa-

tion of X and a regular language L ⊆ T ∗
, a symboli rep-

resentation of post(L, X). We are interested in in�nite

regular languages L, simple enough so that post(L, X)
an be e�etively omputed from any set X . Indeed, if

L is �nite, then post(L, X) an be omputed by pro-

edure 1 and post_star does not add any power to

proedure 1. On the other hand, post(L, X) annot be

omputed for an arbitrary L, sine post(T ∗, X) is equal
to the reahability set whih is not reursive. In the se-

quel, we onsider the speial ase L = σ∗
where σ ∈ T ∗

.

It is easy to de�ne a �rst syntati restrition to

ounter systems suh that the reahability set an be

omputed with an improved version of proedure 1 using

post(σ∗, X) for some yles σ ∈ T ∗
. We all �at ounter
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system [27,38,40℄ a ounter system where, for eah lo-

ation q, there exists at most one elementary iruit in

the ontrol graph ontaining q (see �gure 3). Intuitively

a �at system has no nested loop. For example, to om-

pute the reahability set of the �at ounter system of

�gure 3, we �rst iterate t1, then �re t3 and �nally it-

erate t2. Note that suh an algorithm (if it exists) goes

beyond the standard symboli proedure beause it an

disover the set of on�gurations that are not neessarily

reahable by paths of a bounded length.

t1: x ≥ 0 ∧ x
′ = x + 2 ∧ y

′ = y

t2: x
′ = x + 1 ∧ y

′ = y + 1

t3: x ≥ y ∧ x
′ = x ∧ y

′ = y

q1 q2

Fig. 3: A �at ounter system

4.1 Presburger linear funtions

The set post(σ∗, X) is not Presburger-de�nable in gen-

eral even if X is Presburger-de�nable. Indeed, this set

an be non-reursive sine the one-step reahability rela-

tion R of a Minsky mahine is Presburger-de�nable and

an be enoded by a single loop t suh that Jl(t)K = R.

Nevertheless, we say that a Presburger-de�nable binary

relation R ⊆ Z
n × Z

n
an be aelerated if the binary

relation R∗
is Presburger-de�nable. In this setion, we

de�ne a sublass of Presburger-de�nable binary relations

R, both enompassing most of the usually used binary

relations R = Jl(σ)K and supporting the e�etive om-

putation of a Presburger formula enoding R∗
.

De�nition 2 (Presburger linear funtion [37℄). A

Presburger linear funtion is a funtion f : Z
n → Z

n

suh that there exists a tuple f̄ = (ϕ, M,−→v ), where
ϕ(−→x ) is a Presburger formula over n variables, M ∈
Mn(Z) is a square matrix and

−→
v ∈ Z

n
is a vetor, suh

that f is de�ned over JϕK by f(−→x ) = M.−→x + −→
v .

Suh a tuple f̄ = (ϕ, M,−→v ) is alled a Presburger linear

presentation of f . The formula ϕ is the guard of f̄ .

Note that the binary relation x′ = f(x) where f is

the Presburger linear funtion de�ned by f(x) = 2x

for any x is not aelerable. In fat, the binary rela-

tion x′ ∈ f∗(x) is not Presburger-de�nable. We intro-

due the lass of Presburger linear presentations with

a �nite monoid to enfore the aelerability property.

The monoid of a Presburger linear presentation f̄ =
(ϕ, M,−→v ) is the multipliative monoid M∗

of the ma-

trix M , i.e. M∗ = {1m, M, M2, . . . , Mn, . . .}.

Note that when M = Idm the Presburger presenta-

tion f̄ = (ϕ, M,−→v ) has a �nite monoid. In this ase, the

binary relation

−→
x′ ∈ f∗(−→x ) is enoded by the following

Presburger formula:

∃k ≥ 0,
−→
x
′ = −→

x + k−→v ∧ ∀0 ≤ l < k, ϕ(−→x + l−→v ) (1)

In fat, the following theorem holds.

Theorem 1 ([20,37℄). The binary relation f∗
is ef-

fetively Presburger-de�nable for any Presburger linear

presentation f̄ with a �nite monoid.

Proof. (Sketh) We redue the proof to the straightfor-

ward ase M = Idm. As f̄ = (ϕ, M,−→v ) has a �nite

monoid, there exists an integer n ≥ 0 and an integer

p ≥ 1 suh that Mn+p = Mn
. For any integer k ≥ 0

we denote by (ϕk, Mk,−→v k) a presentation of fk
. Let us

onsider the Presburger linear funtion g de�ned by the

presentation ḡ = (fn(ϕn+p), Idm, (Mp − Idm)−→vn + −→
vp).

We observe that fp+n = g◦fn
and the following equality

provides the redution:

f∗ =

n−1
⋃

r=0

f r

p−1
⋃

r=0

g∗ ◦ fn+r

⊓⊔

Remark 3. The �niteness of the monoid of a Presburger

linear presentation is deidable in polynomial time [19℄.

We have proved that for a Presburger linear presenta-

tion f̄ = (ϕ, M,−→v ) with a �nite monoid, the transition

relation f∗
an be expressed as a Presburger formula.

Then omputing a ndd representing f∗
an be ahieved.

An upper bound for the onstrution of this ndd is 3-

EXPTIME in the size of the ndd enoding ϕ (denoted

|A(ϕ)|), the values
∣

∣

∣

∣

−→
v

∣

∣

∣

∣

∞
and ||M ||∞, and the number

of ounters m. The algorithm is implemented in Fast

and the upper bound has never been reahed on ase-

studies, exept for the TTP system (with two faults),

for whih we have designed a speial aeleration algo-

rithm that takes into aount the partiular form of the

funtions f manipulated.

For some sublasses of Presburger linear funtions

f with a �nite monoid, a more e�ient algorithm for

omputing f∗
an be expeted.

De�nition 3 (Convex translation [4℄). A onvex trans-

lation f is a Presburger linear funtion f = (ϕ, 1m,−→v )
where 1m is the identity matrix and ϕ is a onvex poly-

hedron.

Convex translations are a sublass of Presburger lin-

ear funtions with �nite monoid. The lass enompasses

for example Petri nets and Minsky mahines. Atually,

we an use geometrial properties of onvex sets to alle-

viate the transitive losure onstrution. In fat, in this

ase the Presburger formula (1) an be replaed by the

following one:

∃k ≥ 0,
−→
x
′ = −→

x +k−→v ∧ ϕ(−→x ) ∧ (k = 0∨ϕ(
−→
x
′−−→

v )) (2)
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parameter (magnitude) standard algo. onvex algo.

|A(ϕ)| (105
) 3-EXP quadrati

m (≤ 102
) 3-EXP EXP

||v||∞ (≤ 10) 3-EXP poly. in m

||M||∞ (≤ 10) 3-EXP = 1

Table 1. Complexity of the aeleration algorithms (upper

bounds)

f taken from |A(f∗)| Time (se.) Memory (MB)

protool Standard/Convex Standard/Convex

Dekker, 22 var 1,536 0.7/0.8 4.6/4

Mesh32, 52 var 1,614 2.1/2.5 8/7.8

Mesh32, 52 var 16,766 10.3/7.4 31/13

TTP2, 19 var 26,409 5.6/2.3 17/18

Dekker, 22 var 41,950 18/10.2 52/30

TTP2, 19 var 190,986 50/9 400/140

TTP2, 19 var 380,332 ↑↑↑/34 ↑↑↑/534

Table 2. Pratial omparison of aeleration algorithms

The relation f∗
is proved in [4℄ to be omputable in

time bounded by: |A(f∗)| ≤ |A(ϕ)|2.4.(4.m.
∣

∣

∣

∣

−→
v

∣

∣

∣

∣

∞
+

1)3.m
. The main reason for this improvement w.r.t. the-

orem 1 is that formula (2) has less quanti�ers than for-

mula (1), while eah quanti�er may introdue an expo-

nential blow-up in both time and spae. We all onvex

aeleration the algorithm desribed in [4℄ to ompute

the transitive losure of onvex translations.

Remark 4. Sine the ndd representation is anonial, the

resulting ndd is the same as the one obtained with stan-

dard aeleration. The di�erene is in the intermediate

ndd reahed during the omputation.

The omplexity of the onvex aeleration is quadrati

in |A(ϕ)|, polynomial in

∣

∣

∣

∣

−→
v

∣

∣

∣

∣

∞
and exponential in the

number of ounters m. This is a major improvement

ompared to the standard aeleration algorithm, espe-

ially when onsidering this parameter an take values

greater than 105
. Table 1 realls the upper bounds for

eah aeleration algorithm. These results are proved

in [4℄. Table 1 also provides the typial orders of magni-

tude of eah parameter, based on our experiments on a

set of some 40 ounter systems taken from the literature.

See setion 7 for more details about the experiments.

In pratie, onvex aeleration allows to ompute

some f∗
that annot be omputed by the standard ael-

eration algorithm (see [4℄ and setion 9). Table 2 shows

a omparison of both algorithms on di�erent transitions.

The onvex algorithm performs better (in both time and

spae) than the standard algorithm as soon as the result-

ing automaton (of the omputation) has approximately

10, 000 nodes. When |A(f∗)| ≥ 100, 000 nodes, the on-

vex algorithm is learly more e�ient, and it an be the

ase that it sueeds in omputing A(f∗) while the stan-
dard algorithm fails.

4.2 Linear ounter systems with a �nite monoid

De�nition 4 (Linear ounter system [37℄). A m-

dim ounter system S = (Q, T, m) is a m-dim linear

ounter system if eah transition t ∈ T is labeled by

a Presburger linear presentation f̄t = (ϕt, Mt,
−→
vt ) suh

that Jl(t)K = {(−→x ,−→x ′) ∈ Z
2m; −→

x ′ = ft(
−→
x )}.

Notation. In the following, we do not distinguish any-

more a Presburger linear funtion f and its presentation

f̄ . There are many presentations for a single funtion,

however f̄ is unambiguously given by the linear ounter

system to be analyzed.

A key notion for linear ounter systems is the �nite-

ness of the monoid of the system. We now de�ne the

monoid of a linear ounter system. We denote by M the

set M = {Mt|t ∈ T }.

De�nition 5. The monoid M∗
of a linear ounter sys-

tem S is the multipliative monoid generated by the set

of matriesM, i.e.M∗ =
⋃

n≥0

⋃

M1,...,Mn∈M M1 . . . Mn.

Remark 5. The �niteness of the monoid of a linear sys-

tem is deidable in exponential time [59℄.

Many well-known sublasses of ounter systems ap-

pear to be linear ounter systems with �nite monoid.

Minsky mahines, Petri nets extended with reset/ in-

hibitor/ transfer ars [32,39℄, Ibarra's reversal-bounded

ounter mahines [47℄ and broadast protools of Emer-

son et Namjoshi [33,34℄ are linear ounter systems with

�nite monoids.

4.3 Flat linear ounter systems with a �nite monoid

Theorem 2 ([37℄). The reahability binary relation of

a �at linear ounter system with a �nite monoid is ef-

fetively Presburger-de�nable.

Linear ounter systems with �nite monoid satisfy two

properties ruial for our approah. First, they enom-

pass most of the interesting sublasses of ounter sys-

tems. As a onsequene, veri�ation tehniques for lin-

ear ounter systems are very generi and an be applied

to a large range of systems. Seond, the reahability set

of �at linear ounter systems with �nite monoid is ef-

fetively omputable. Compared for example to Minsky

mahines, they have three spei� advantages:

Transitions are stable under omposition, whih simpli-

�es the aeleration omputation sine a sequene of

transitions σ behaves as a single transition.

Transitions are more expressive than those of a Minsky

mahine. Even if any linear ounter system is equiv-

alent w.r.t. reahability to a Minsky mahine, the

orresponding ontrol struture is muh more di�-

ult to handle beause of the nested loops indued

by the simulation.
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The language of guards in transitions is losed by dis-

juntion and this is a entral requirement for the re-

dution by union desribed in setion 5. This teh-

nique is intensively used in Fast and experiments

prove it is a key feature of the tool.

5 Appliation to Flattable Counter Systems

An e�ient aeleration algorithm is not su�ient to

ompute reahability sets. We need a way to selet whih

iruits must be used to ahieve the omputation. In [7℄,

we identify the ornerstone notions of �attable systems

and �attenings of systems. We then dedue a proedure

for reahability set omputation, maximal in the sense

that it is omplete relatively to �attable systems. This

proedure is generi and shemati. Generi, in the sense

that it does not depend of the partiular data types

manipulated by the system; and shemati, sine one

must implement two abstrat sub-proedures (Choose

andWathdog) to obtain an e�etive (and maximal) pro-

edure. In this setion we reall some results from [7℄

and present the reahability set omputation proedure.

We then disuss the implementations of the Choose and

Wathdog proedures in Fast, and introdue spei� op-

timizations for iruit seletion. Finally, we disuss some

questions about �attable systems.

5.1 Flattenings and �attable systems

Sine most systems of interest are not �at, the issue is to

deal with non-�at systems. A way to do it is to onsider

�attenings [7℄ of the system under study. A �attening S′

of a system S (see �gure 4) is a �at system simulated by

S. Note that �attening is a generalization of unfolding,

where one elementary yle (and only one) is allowed on

eah loation.

q1

q2

t1: x ≥ 0 ∧ x
′ = x + 2 ∧ y

′ = y

t2: x
′ = x + 1 ∧ y

′ = y

t3: x ≥ y ∧ x
′ = x ∧ y

′ = y
t4: x

′ = x − y ∧ y
′ = y

x
′ = x ∧ y

′ = y + 1

q1 q1

q2

t1

t3

q2

t4

t1

t2

q1q2

t3

t3 t4

t4

Fig. 4: A system (left) and one of its �attenings (right)

A �attening S′
of a system S de�nes a subreah-

ability set post∗S′(X ′) inluded in post∗S(X) (for some

X ′
derived from X , see [7℄). A system S is �attable [7℄

when at least one of its �attenings S′
is equivalent to S

w.r.t. reahability, i.e. post∗S′(X ′) = post∗S(X). Sine S′

is �at, the set post∗S′(X ′) is omputable. Then using enu-

meration of �attenings and iruit aeleration, the set

post∗(X0) an be omputed if (S, X0) is �attable. A-

tually, the reverse impliation also holds [7℄. Flattable

systems appear to be a maximal lass for reahability

set omputation by iruit aelerations.

5.2 A omplete proedure for �attable systems

The following proedure is omplete (w.r.t �attable sys-

tems) for reahability set omputation of (S, X0): enu-
merate a �attening S′

of S, ompute post∗S′(X ′
0), test if

it is a �xpoint of S: if so, return, otherwise iterate.

However, suh a proedure will surely onsume too

many resoures in pratie. We proposed in [7℄ an ap-

proah whih proves to be e�ient in pratie. A re-

strited regular linear expression (rlre) over an alphabet

σ is a regular expression of the form w∗
1 . . . w∗

n where

wi ∈ Σ∗
. The �xpoint omputation for �attable systems

redues to exploring the set of rlre over T . This an be

ahieved by building iteratively an inreasing sequene

of rlre suh that eah w ∈ T ∗
is present in�nitely often

in the sequene.

The key issue is to selet the w ∈ T ∗
to be added

to the sequene at eah step, suh that the �xpoint

is reahed quikly. Proedure 2 presents our omplete

heuristi. Instead of onsidering all sequenes in T ∗
, we

onsider only sequenes of length less than or equal to

some bound k. This set of sequenes is denoted T≤k
, and

a iruit seletion where length of iruits is limited to k

is said to be k-�attable. If the searh fails, it is eventu-

ally stopped, k is inremented and the k-�attable maro

is launhed again. Proedure Wathdog deides when k-

�attable should be aborted, and proedure Choose se-

lets at eah step a sequene w ∈ T≤k
.

The proedure is shemati: Choose and Wathdog

are abstrat. Assuming their implementations respet

the fairness onditions listed in proedure 2, the proe-

dure obtained is orret and omplete for �attable linear

ounter systems with �nite monoid [7℄.

5.3 Implementation of proedure reah2

We desribe the implementations of Choose and Wath-

dog in Fast. We believe that these solutions are generi

enough to be used with other data types than ounters.

Proedure Choose. There is no monotoni relationship

between the size of a region and the size of its onretiza-

tion (w.r.t. ⊆). Then regions reahed during intermedi-

ate steps of omputation may have a size muh larger

than the one of the �nal region representing the �xpoint.
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proedure reah2(x0)
input: a ndd x0

1: x← x0 ; k ← 0
2: k ← k + 1
3: start

4: while post(x) 6⊆ x do /* k-�attable */

5: Choose fairly w ∈ T≤k

6: x← post_star(w, x)
7: end while /* end k-�attable */

8: with

9: when Wathdog stops goto 2
10: return x

Fairness: we assume that along an in�nite exeution path of

reah2, proedure Wathdog is alled in�nitely often. More-

over, between two alls to Wathdog, eah w ∈ T≤k
is seleted

at least one.

Proedure 2: Proedure reah2

Suh large intermediate regions must be avoided as muh

as possible. Choose selets the next w ∈ T≤k
, suh that

|post_star(w, x)| ≤ |x|. If there is no suh w, then the

next one is seleted.

Proedure Wathdog. On the one hand, the proedure

should detet as early as possible that the length of ir-

uits is not su�ient to ompute the reahability set,

in order to avoid useless omputations. On the other

hand it should keep the length of iruits tight enough

to prevent |T≤k| from beoming intratable. Let us de-

note by depth the number of iterations of line 4 of Proe-

dure 2 (maro k-�attable, depth is reset to 0 when exiting

the maro). Our stop riterion for Wathdog is a maxi-

mal limit on depth. In pratie, with a value of k large

enough, the �xpoint is omputed within a few iterations.

Completeness? These implementations of Choose and

Wathdog do not fully respet the fairness onditions

de�ned in proedure 2, thus termination is no longer

guaranteed in theory. However, in pratie, Fast termi-

nates on many examples, as reported in setion 7.

5.4 Redution of the number of yles

A remaining issue in proedure reah2 is the ardinal

of T≤k
exponential in k. We use redution tehniques [7,

37℄ to derease dramatially the number of useful se-

quenes, so that the enumeration beomes tratable in

pratie. The idea underlying redution is that all se-

quenes are not needed to ompute the reahability set,

and moreover in some ases some �nite sets of sequenes

an safely be replaed by a single transition keeping the

same reahability set.

We mainly use two redution tehniques: redution

by union [37℄ and redution by ommutation [7℄.

Redution by union onsists in merging two transitions

with same Presburger linear funtions and di�erent

system |T | k |C≤k| U C U+C

sm 13 1 14 14 14 14

2 183 103 57 35

onsisteny 8 1 9 9 9 9

2 68 45 44 30

3 484 172 299 98

swimming pool 6 1 7 7 7 7

2 43 21 24 16

3 259 56 114 28

4 1555 126 614 47

5 9331 252 3591 86

|C≤k| : number of valid iruits of length ≤ k
U: number of valid iruits after the redution by union

C: number of valid iruits after the redution by ommutation

U+C: number of valid iruits after the redution by union and

ommutation

Table 3. E�et of iruit redutions on ase-studies

guards f1 = (ϕ1, M,−→v ) and f2 = (ϕ2, M,−→v ) into a

unique a�ne funtion f1 + f2 = (ϕ1 ∨ ϕ2, M,−→v ).
Redution by ommutation onsists in removing tran-

sitions g · f and f · g, where f, g ∈ T≤k
for some k,

whenever f and g satisfy

f ·g
−−→=

g·f
−−→. This is sound

w.r.t. reahability sine (
f ·g
−−→)∗ and (

g·f
−−→)∗ are then

equal to (
f
−→)∗ • (

g
−→)∗.

In [37℄, it is proven that redution by union redues

the number of yles of length ≤ k of linear ounter

systems with �nite monoid to a polynomial number in

k. Table 3 shows the e�et of these redutions on a few

examples. The bold value of k indiates the length of

iruits used by Fast to ompute the �xpoint.

Both redution tehniques appear to perform well in

pratie, and their ombination leads to impressive ut-

o�s: |C≤k| is divided by 5 in the �rst two examples,

and by 30 in the last one. Redutions are de�nitely a

key feature in Fast performanes, allowing the tool to

onsider iruits of length 4 or 5 in some examples.

Beyond �at aeleration. The redution by union al-

lows to ompute some partiular kinds of nested loops.

Atually, when onsidering linear ounter systems with

guards de�ned over the full binary automata logi, the

union redution allows to ompute the reahability set of

non-�attable ounter systems. The question is still open

for standard linear ounter systems.

5.5 Flattable systems almost everywhere!

The question �Given a linear ounter system with �-

nite monoid S, is S �attable?� is undeidable, sine the

reahability problem redues to this question [7℄. How-

ever many interesting sublasses of ounter systems have

been shown to be �attable. It is the ase for 2-dim VASS

[56℄, k-reversal ounter mahines, lossy VASS, Cyli

VASS and other sublasses [57℄.

This is interesting for at least two reasons. From a

pratial point of view, proedure 2 provides a uni�ed
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and e�ient algorithm to deide reahability on all these

sublasses of ounter systems. This is an important step,

sine even though most of these sublasses were known

to be deidable, their algorithms were totally di�erent

and very di�ult to extend. From a theoretial point of

view, it is interesting to note that some of the previous

proofs of reahability used spei� ases of iruit ael-

eration and �attening. These proofs are easier to write

one these onepts are learly identi�ed.

6 FAST: Tool desription

Fast [5,9℄ is a tool for heking safety properties of linear

ounter systems. The tool is designed aording to the

�at aeleration framework.

6.1 Computational framework

Fast is organized through a lient-server arhiteture.

The server is the omputation engine as desribed in

setion 6.1. It ontains a Presburger library, the ael-

eration algorithm and the searh heuristis. The lient

is a front-end whih allows the user to interat with the

server through a graphial user interfae (GUI, �gure 5).

The server an also be used as a standalone tool. The

server is written in C++ (7, 400 lines) while the lient is

written in Java. TheMona library [53,61℄ provides basis

for automata manipulations.

6.1.1 Software arhiteture

Fast engine is strutured aording to the �at aeler-

ation framework. The program is organized around four

main lasses: Presburger-a�ne funtions, ndd, aelera-

tion algorithms and a �attening heuristi.

ndd are enoded in basis 2, least-digit �rst. The lass

provides standard set operations like union, intersetion,

omplementation and projetion, as well as the synthesis

of a ndd from a Presburger formula. This implementation

is built on the Mona pakage. Note that for e�ieny

purposes, Mona restrits automata to 224
nodes.

Standard aeleration and onvex aeleration algo-

rithms are implemented, whih an be used for both

forward and bakward omputation.

The �attening heuristi follows proedure 2. Redution

by ommutation and redution by union are both avail-

able.

6.1.2 Tehnial issues

Proedure reah2, data strutures and algorithms pre-

sented in setions 3 and 4 provide the bakbone of Fast.

However, several pratial problems are not overed by

these results. For example, loations an be enoded ex-

pliitly or by ounters, iruits an be omputed stati-

ally or on-the-�y. Here, we desribe some implementa-

tion hoies made in Fast. Currently there is no known

best solution for eah of the problems mentioned here-

after.

Variables in N. All the results of setions 3 and 4 hold

for variables ranging over Z. However in Fast ounters

range over N. First, the orresponding ndd are smaller

thanks to a simpler enoding, whih leads to better per-

formane. Seond, this is not a strit restrition sine we

did not �nd any example where negative ounters were

required and moreover a variable x ∈ Z an always be

enoded by two positive variables x+, x− ∈ N suh that

x = x+ − x−
and (x+ = 0 ∨ x− = 0).

Loation enoding. A stated in remark 1 (page 4), boun-

ded variables (ontrol, boolean, bounded integer vari-

ables) are enoded as ounter variables. On the one hand

it allows for a better sharing of the reahability set stru-

ture and avoids an expliit produt of ontrol strutures

for systems omposed of many omponents. On the other

hand, we do not take any advantage of the boundedness

of these variables. A solution may be to extend ndd with

a bdd-like struture for bounded variables, following the

work done in [11℄.

Stati omputation of iruits. We ompute statially

iruits of length k. Pratial ase studies show that this

approah is tratable thanks to redutions. However dis-

overing iruits on-the-�y, or at least a dynami sliing

of potential iruits, would probably be useful.

6.2 Input/Output

Fast takes as input a desription of the system to be an-

alyzed and a strategy speifying what to ompute. Out-

puts are textual messages stating if the system is safe or

not. Finally, a graphial user interfae is also available.

6.2.1 The input system

The linear ounter system an be desribed diretly in

the Fast formalism. However sine many of Fast's ase

studies were extended Petri nets, we developed a tool [10℄

to transform a Petri net in pnml format into a Fast

model. The language pnml [16℄ desribes various exten-

sions of Petri nets and is being standardized (ISO/IEC

15909-2).

6.2.2 The strategy

The strategy is a sript speifying the sequene of om-

putations to perform in order to prove the orretness of

the system. This sript language manipulates sets of on-

�gurations (region), sets of transitions (transition)
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and booleans. All basi set-operations are available. The

user an de�ne �nite sets of transitions T ′ ⊆ T ∗
and

primitives to ompute post∗(T ′, X0) and pre∗(T ′, X0) are
provided. A standard forward analysis is spei�ed us-

ing only four instrutions: delare the initial region X0,

ompute the reahability set post∗(T ′, X0), delare the

region P desribing the property to hek and �nally test

whether post∗(T ′, X0) ⊆ P .

The language also allows the user to guide the tool

more preisely. For example a system an be analyzed

in an inremental way, dividing the whole system into

smaller parts (f. setion 9); the user an indiate iruits

to be used; hoose the aeleration algorithm; or set up

parameters of the heuristis.

The sript language gives the user ontrol over the se-

quene of omputations performed. This an prove use-

ful when the fully automati approah fails. Thus, Fast

stands between a fully automati approah, justi�ed when

termination is guaranteed but restritive otherwise, and

omputer-aided veri�ation.

6.2.3 User Interfae

A graphial user interfae [6℄ is available (see �gure 5). It

provides aided editing of systems and strategies, pretty

printing, and prede�ned strategies. One the omputa-

tion starts, the interfae supplies the user with feedbak

on a number of parameters (memory onsumption, time

elapsed, et.).

6.3 FAST Extended Release

An extended version of Fast has been presented in [9℄.

This new release o�ers mainly an open arhiteture al-

lowing to plug easily any Presburger pakage to the tool.

Open arhiteture. The arhiteture has been slightly

redesigned and is now divided into two parts: on the

one side, a ounter system analysis engine built upon a

generi Presburger API (instead of a ndd pakage); on

the other side, various implementations of this API. The

generi Presburger programming interfae (Genepi) re-

quires only basi set-theoreti operations on Presburger-

de�nable sets. We provide three implementations of the

API based on standard pakages Lash [55℄, Mona [61℄

and Omega [62℄. The �rst two pakages are automata-

based while Omega is formula-based. TheMona imple-

mentation orresponds to the original version of Fast.

All experiments arried out in this paper use the Mona

implementation.

The shared automata pakage. An implementation of

the API using shared automata introdued by Couvreur

in [28℄ has been developped by Jér�me Leroux and Gérald

Point. These automata share their strongly onneted

Fig. 5: Fast graphial user interfae

omponents in a bdd-like manner, allowing to implement

important features for intensive omputation, suh as

ahe omputation and onstant-time equality testing.

The library is funtional, but the omputation ahe

is not su�iently optimized yet. The shared automata

pakage is alled PresTaf.

Experimental omparisons performed in [9℄ demonstrate

that the three automata-based implementations of the

generi Presburger API largely outperform the formula-

based implementation. Indeed Omega appears to om-

pute unduly ompliated Presburger formulas (even with

the simpli�ation method provided by the pakage), while

Lash, Mona and PresTaf bene�t from anonial rep-

resentations of automata.

7 Experiments

This setion reports some experiments made with Fast.

7.1 About tests

We use a large pool of ounter systems and ase studies

analyzed by tools Alv, Babylon

3

, Brain, Lash and

TReX to evaluate Fast. These 37 systems are available

on Fast web pages [35℄.

3

http://www.ulb.a.be/di/ssd/lvanbegin/CST



12 Sébastien Bardin et al.: FAST: Aeleration from theory to pratie

Symbol Meaning

m number of ounters

T set of transitions

k length of iruits used by Fast

C≤k
set of iruits of length ≤ k

|A| number of nodes of the ndd

|ρ| length of the rlre built by reah2

↑↑↑ memory exeeded

≥ c time elapsed (memory onsumed)

greater than c seonds (Mb)

? unknown value

- omputation does not apply

Table 4. Symbols used in test reports

These systems range from triky aademi puzzles like

the swimming pool protool [42℄ to industrial ase stud-

ies like the ahe oherene protool for the Futurebus+.

We distinguish three ategories of systems: ounter sys-

tems with a �nite reahability set, monotoni ounter

systems with an in�nite reahability set and linear ounter

systems with an in�nite reahability set.

All experiments have been performed on an Intel Pen-

tium III 933Mhz equipped with 512 Mbytes of memory.

Time is in seonds and memory in Mbytes. Fast is used

with the following settings: standard aeleration, basi

strategy (no human guidane), Mona-based implemen-

tation of the Presburger API.

7.2 Results

Table 5 reports Fast behavior on the examples, us-

ing forward omputation. The number of yles |C≤k| is
given after redutions (union and ommutation).

Fast omputes suessfully the reahability set of 78%
of the systems onsidered. This ratio is 74% when on-

sidering only unbounded systems. We show in setion 8

that Fast performs better than similar tools.

These good results validate the design of Fast. First,

all examples are expressed straightforwardly by means

of ounter systems. Seond, the monoid is always �nite.

At least 78% of the systems are �attable and have a

Presburger-de�nable reahability set. Finally in 19% of

the tests, the length of iruits used is stritly greater

than 1. This number inreases to 22% when onsidering

only unbounded ounter systems. This proves that on-

sidering iruits and not only loops is a major feature.

Fast limitations are likely to be more pratial (mem-

ory onsumption, time elapsed) than theoretial. Cruial

points are not only the number of variables, but also

(and mainly!) the struture of the reahability set and

the length k of the iruits used. Indeed, when k is too

large, the stati omputation of iruits onsumes too

many resoures.

8 Comparison with other tools

In this setion, we ompareFast with other tools, namely

Alv, Lash and TReX, to evaluate their performane on

exat forward reahability set omputation. Let us pin-

point that the goal here is not to �nd out whih tool is

the best for ounter system validation. Atually, it would

be unfair for TReX whih is mostly designed for timed

automata extended with integer variables, and for Alv

whih o�ers full CTL model heking, bakward ompu-

tation, over-approximation and di�erent symboli repre-

sentations. These experiments are rather used to evalu-

ate the ontribution of eah partiular feature of Fast.

8.1 The tools

First, we present the tools Alv, Lash and TReX, and

ompare them with Fast through the �at aeleration

framework.

Alv [25,68℄ is designed to hek any CTL formula on

full ounter systems. Alv also o�ers di�erent sym-

boli representations for integer vetors (automata

or Presburger formula) and a wide range of options,

like bakward omputation, over-approximation [12℄

for the automata-based representation and aelera-

tion [50℄ for the formula-based representation. This

aeleration algorithm is designed for the following

lass of operations: there is no guard and ations

are mostly relations of the form x′
i#xi + c where

# ∈ {≤, =,≥} and x′
i is the value of variable xi after

the transition ours. Typially Alv uses approxi-

mate forward �xpoint omputation to prune the state

spae during the bakward �xpoint omputations.

In the rest of the paper, we use the following on�g-

uration: automata-based representation (then no a-

eleration), forward omputation, no over-approximation.

In this on�guration, the main di�erenes with Fast

are that no aeleration algorithm is available, the

heuristi is similar to reah1 and bounded variables

are enoded by bdd [11℄.

Lash [55℄ works on linear ounter systems. Regions

are enoded by automata and standard aeleration

is implemented for funtions with a �nite monoid.

Without user guidane, Lash is restrited to loop

aeleration (i.e. the heuristi onsiders only words

w ∈ T instead of sequenes in T ∗
) beause no iruit

searh is supplied.

TReX [3℄ manipulates ounter systems restrited to

timed automata-like operations

4

: guards are onjun-

tions of onstraints xi −xj ≤ c and ations are of the

form x′
i = xj +c where xi is a variable, c is a onstant

and xj is a variable or the onstant 0. Regions are en-
oded by pdbm, an extension of dbm with additional

4

Atually TReX is designed to hek systems with loks and

ounters. We onsider here the restrition to ounter systems.
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System m |T | se Mb |ρ| k |C≤k|
Bounded ounter systems

Produer/Consumer 5 3 0,41 2,37 3 1 3

RTP 9 12 2,24 2,76 8 1 12

Lamport ME 11 9 2,70 2,88 11 1 9

Reader/Writer 13 9 9,68 23,14 23 1 9

Peterson ME 14 12 4,97 3,78 12 1 12

Dekker ME 22 22 21,72 5,48 36 1 22

Monotoni unbounded ounter systems

Manufaturing 7 6 ≥ 1800 ? ? ? ?

swimming pool 9 6 111 29,06 9 4 47

CSM 13 13 45,57 6,31 32 2 35

Kanban 16 16 10,43 6,54 2 1 16

Multipoll 17 20 22,96 5,13 13 1 20

FMS 22 20 157,48 8,02 23 2 46

extended ReaderWriter 24 22 ≥ 1800 ? ? ? ?

pnsa 31 38 ≥ 1800 ? ? ? ?

Mesh2x2 32 32 ≥ 1800 ? ? ? ?

Mesh3x2 52 54 ≥ 1800 ? ? ? ?

Unbounded ounter systems

Synapse Cahe Coherene 3 3 0,30 2,23 2 1 3

Berkeley Cahe Coherene 4 3 0,49 2,75 2 1 3

M.E.S.I. Cahe Coherene 4 4 0,42 2,44 3 1 4

M.O.E.S.I. Cahe Coherene 4 5 0,56 2,49 3 1 5

lift ontroller - N 4 5 4,56 2,90 4 3 20

Illinois Cahe Coherene 4 6 0,97 2,64 4 1 6

Fire�y Cahe Coherene 4 8 0,86 2,59 3 1 8

Dragon Cahe Coherene 5 8 1,42 2,72 5 1 8

Esparza-Finkel-Mayr 6 5 0,79 2,55 2 1 5

tiket 2i 6 6 0,88 2,54 5 1 6

tiket 3i 8 9 3,77 3,08 10 1 9

barber m4 8 12 1,92 2,68 8 1 12

bakery 8 20 ≥ 1800 ? ? ? ?

Futurebus+ Cahe Coherene 9 10 2,19 3,38 8 1 10

Consisteny 12 8 200 7,35 9 3 98

Central Server 13 8 20,82 6,83 11 2 25

Last-in First-served 17 10 1,89 2,74 12 1 10

Produer/Consumer Java - 2 18 14 13,27 3,81 53 1 14

Produer/Consumer Java - N 18 14 401,5 12,46 86 2 75

In/De 32 28 ≥ 1800 ? ? ? ?

2-Produer/2-Consumer Java 44 38 ≥ 1800 ? ? ? ?

Table 5. Fast in pratie

parameters onstrained by an arithmeti formula. An

aeleration proedure is implemented, whih allows

at least all aelerations of Fast and Lash. However

this proedure produes unrestrited arithmeti for-

mulas and then inlusion beomes undeidable. The

heuristi is restrited to C≤k
, for a value of k stat-

ially de�ned by the user. Finally, TReX does not

ompute iruits statially but disovers them on-

the-�y. A more in-depth omparison of Fast and

TReX is presented in [29℄.

Table 6 ompares the di�erent tools through the �at

aeleration framework. Column �termination� indiates

the lass of systems for whih the tool terminates (F:

�attable, k-F: k-�attable, Unif-b: uniformly bounded).

8.2 Comparison on forward omputation

We now ompare the apabilities of Alv, Lash, Fast

and TReX in exat forward omputation of reahability

sets. The ounter systems hosen for tests all have an

in�nite reahability set, exept systems RTP, Lamport

and Dekker. Results are summarized in table 7.
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Alv full ndd no Unif-b

Fast linear ndd �at F

Lash linear ndd loop 1-F

TReX restrited pdbm interpolation k-F (

∗
)

(

∗
) Termination modulo an orale to deide inlusion.

Table 6. Di�erent tools for the veri�ation of ounter systems.

Experimental results show a drop in performane of

Alv and Lash when k inreases. Fast ompletely sup-

ports the �at aeleration framework and obtains the

best results. On the other side, Alv does not supply any

aeleration mehanism and the tool does not sueed in

omputing these omplex reahability sets. BetweenAlv

and Fast, the tool Lash is restrited to loop aelera-

tion and it terminates only on simple examples (k ≤ 1).
Note that when Lash is provided with the iruits to

use, its performane is similar to that of Fast. The dif-

ferene between Fast and Lash is primarily the length

of iruits, not the ndd implementation. Finally, TReX

performane is less orrelated with k, sine the tool ter-
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System Alv(∗) Lash Fast k TReX

RTP (bounded) T T T 1 T

Lamport (bounded) T T T 1 T

Dekker (bounded) T T T 1 T

tiket 2 T T T 1 T

kanban ↑ T T 1 T

multipoll ↑ T T 1 ↑
prod/ons java (2) ↑ T T 1 -

prod/ons java (N) ↑ ↑ T 2 -

lift ontrol, N ↑ ↑ T 2 T

train ↑ ↑ T 2 T

sm, N ↑ ↑ T 2 ↑
onsisteny ↑ ↑ T 3 -

swimming pool ↑ ↑ T 4 ↑
pnsa ↑ ↑ ↑ ? ↑
inde ↑ ↑ ↑ ? ↑
bigjava ↑ ↑ ↑ ? ↑

T: omputation of the reahability set in less than 20 minutes

↑: no termination in less than 20 minutes

- : the systems annot be modeled in TReX

(∗) These results are onsistent with those reported by Bultan and

Bartzis in [12℄.

Table 7. Comparison of di�erent tools

minates for the lift system (k = 2) and fails on multipoll

(k = 1).

These results demonstrate a strong orrelation between

the �at aeleration framework and pratial termina-

tion. Comparison betweenAlv and Lash shows the ben-

e�ts of aeleration, while omparison between Lash and

Fast highlights the neessity of seleting iruits and not

only loops.

TReX results show that pdbm is not a good symboli

framework for ounter systems, sine many systems an-

not be modeled this way and moreover, despite aeler-

ation, termination ours less frequently. Again, reall

that TReX is primarily designed to handle parametri

timed systems.

8.3 Comments

Fast appears to be a very e�ient tool for the forward

omputation of reahability sets of ounter systems. In

experiments, Fast performane is learly superior to

that of similar tools Alv, Lash and TReX.

Again, reall that it does not neessarily imply that

Fast is better then the other tools for ounter systems

validation sine we restrited the experiments to exat

forward omputation while other approahes exist. More-

over, reall that we use restritions of Alv and TReX

whih are primarily designed to handle di�erent systems

(TReX) or riher properties (Alv). Yet, we believe that

the omputation of the exat reahability set of a linear

ounter system is an important issue and in this setting,

tehnologies implemented in Fast are learly superior.

9 The TTP protool

This setion desribes the veri�ation of the TTP pro-

tool with the tool Fast. In prior work the protool

was veri�ed orret by hand (for an arbitrary number

of faults) or in a omputer-aided manner (for one fault)

with Lash and Alv. These tools ould not verify or-

retness for two faults. Fast heks automatially the

orretness of the protool for one fault, and orretness

is proved for two faults, using abstrations.

9.1 Protool desription

The TTP protool [54℄ is supported by the transport

industry (Airbus, Audi, EADS, PSA and others) and

aims at managing embedded miroproessors. We fous

here on the group membership algorithm of the TTP. It

is a fault-tolerant algorithm, preventing the partitioning

of valid miroproessors (stations) after a failure.

A lique is a subset of stations ommuniating only

with stations of the same lique. In normal behavior,

there is only one lique ontaining all the valid stations.

The protool ensures that when a fault ours and re-

ates di�erent liques among the stations, after a while

valid stations belong to a unique lique.

Desription. Time

5

is divided into rounds. Eah round

is divided into as many slots as stations. The protool

behaves as follows (a more omplete desription an be

found in [54,22℄):

1. Eah station si keeps the following information: a

list li of boolean values stating, for eah station sj ,

whether si onsiders sj as valid or not; two ounters

Ci
Ack and Ci

Fail.

2. During a slot, only one station broadasts a message

and the others reeive it. The message is the list li.

3. When a station sj reeives a message from a station

si: if li 6= lj , or if no message is reeived, then sj

onsiders si as faulty; lj is updated and C
j
Fail is in-

remented. Otherwise C
j
Ack is inremented.

4. When a station si is about to broadast a message:

if Ci
Ack ≤ Ci

Fail then si onsiders itself as invalid and

beomes inative (no emission). Otherwise Ci
Ack and

Ci
Fail are reset to 0, and li is broadasted to all other

stations.

9.2 Modeling

We use the modeling proposed by Mereron and Boua-

jjani in [22℄. This modeling is based on ounter systems.

It aptures an arbitrary number N of stations but only

5

Cloks are synhronized by other mehanisms of the TTP pro-

tool.
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a �xed number of faults. Mereron and Bouajjani atu-

ally provide an in�nite family of ounter systems, eah

modeling the behavior of the protool for some number

f of faults.

The ounter system for f = 1 is given in �gure 6. Vari-

able Cw (resp. CF ) denotes the number of ative stations

(resp. inative stations). Variable Cp ounts the number

of slots elapsed during the round. Sine a round is di-

vided into N slots, when Cp = N , variable Cp is reset

to 0 and a new round begins. Loation normal models

the normal behavior of the protool. When a fault o-

urs, the protool enters abnormal behavior. Loation

Round1 is the �rst round following the error. Loation

later represents the other rounds. A fault divides ar-

bitrarily ative stations into two liques C1 and C0. We

denote by C1 and C0 the number of stations of liques

C1 and C0. Variable d (resp. d0, d1, dF ) ounts the num-

ber of ative stations (resp. from C0, from C1, inative)

whih have emitted during the round.

/ CF=0,CW=N,Cp=0
d=0,dF=0

/ C1>=0, C0>=0, 
C1+C0=CW, d1=1,d0=0,

dF=0,Cp=1

later

round1normalinit

d=0,dF=0

Cp=N /
CW=C1+C0,Cp=0,

Cp=0,d=0,dF=0
Cp=N / 

dF<CF /
dF++, Cp++

d1<C1 & C1+C0−2d0>0 /
d1++, Cp++

C1−−,dF++,CF++,Cp++
d1<C1 & C1+C0−2d0<=0/

d0<C0 & C1+C0−2d1>0 /
d0++, Cp++

d0<C0 & C1+C0−2d1<=0 /
C0−−,dF++,CF++,Cp++

dF<CF /
dF++,Cp++

d1++,Cp++
d1<C1 & C1>C0 /

d1<C1 & C1<=C0 /
C1−−,CF++,dF++,Cp++

d0<C0 & C0>C1 /
d0++,Cp++

d0<C0 & C0<=C1 /
C0−−, CF++, dF++,Cp++

Cp=N & !(C1=0) & !(C0=0) /
d1=0,d0=0,dF=0,Cp=0

d<CW / d++,Cp++

dF<CF / dF++,Cp++

Cp=N /  d1=0,d0=0,dF=0,Cp=0

Fig. 6: Model for the TTP, 1 fault

The safety property to hek is that, at most two rounds

after the fault ours, there is only one lique left. It

is expressed in this model by the following property

(P1) : loation = later ∧ Cp = N ⇒ (C1 = 0 ∨ C0 = 0).

Remark 6. This spei�ation is atually inomplete, and

we should hek: For all paths, if a fault ours then lo-

ation later is reahed and property P1 holds. However

this property is not a safety property. Model heking

tools for in�nite state systems suh as Alv an han-

dle these type of properties whih annot be handled by

reahability tools suh as Fast.

Interests of this ase study. The number of ounters is

not large (9), and ations are standard. However guards

are omplex linear inequalities involving many variables.

The ounter system is not an extended VASS nor a re-

strited ounter system manipulated by TReX. More-

over, beause of the strong onnetion between variables,

the reahability set has a very omplex struture. How-

ever, it is Presburger-de�nable.

9.3 Automati veri�ation for 1 fault

The ounter system of �gure 6 is not linear beause of

the non-deterministi assignment of the transition be-

tween loation normal and loation Round1. Hopefully,

sine the transition between later and normal models

returning bak to the normal mode, property P1 is only

onerned with what happens in later, and variables af-

feted non deterministially are not used in normal, we

an remove this transition. Then the non deterministi

assignment an be enoded into the initial region.

The resulting linear ounter system is presented in �g-

ure 7. This system has a �nite monoid.

later

round1normalinit

Cp=0,d=0,dF=0
Cp=N / 

dF<CF /
dF++, Cp++

d1<C1 & C1+C0−2d0>0 /
d1++, Cp++

C1−−,dF++,CF++,Cp++
d1<C1 & C1+C0−2d0<=0/

d0<C0 & C1+C0−2d1>0 /
d0++, Cp++

d0<C0 & C1+C0−2d1<=0 /
C0−−,dF++,CF++,Cp++

dF<CF /
dF++,Cp++

d1++,Cp++
d1<C1 & C1>C0 /

d1<C1 & C1<=C0 /
C1−−,CF++,dF++,Cp++

d0<C0 & C0>C1 /
d0++,Cp++

d0<C0 & C0<=C1 /
C0−−, CF++, dF++,Cp++

Cp=N & !(C1=0) & !(C0=0) /
d1=0,d0=0,dF=0,Cp=0

/ C1>=0, C0>=0, 
C1+C0=CW, d1=1,d0=0,

dF=0,Cp=1
CF=0,CW=N,Cp=0
d=0,dF=0

d<CW / d++,Cp++

Cp=N /  d1=0,d0=0,dF=0,Cp=0

dF<CF / dF++,Cp++

Fig. 7: Linear ounter system for the TTP, 1 fault

Results. Fast heks automatially that property P1 is

satis�ed. The omputation of the reahability set re-

quires only yles of length 1, and the minimal ndd om-

puted has 27, 932 nodes. Computation takes 1, 880 se-

onds and 73 Mb of memory.

Inremental analysis. The omputation time an be re-

dued via a better sript strategy. Indeed, Fast heuristi

does not take into aount the partiular aspet of the

ontrol graph of the protool. Sine there is no return-

ing bak in the graph, we an �rst ompute the set of

all on�gurations reahable on loation normal, then �re

the transition to reah loation Round1, and iterate the

proess. This deomposition is made expliit in �gure 8.
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With this method, omputation time drops to 203 se-

onds for a memory onsumption of 55 Mb

6

.

later

round1normalinit

Fig. 8: Modular deomposition of the TTP

9.4 Veri�ation for 2 faults

The linear ounter system for two faults is presented

in �gure 9. The normal behavior is not desribed in the

�gure. The system is muh larger than the one for one

fault, with 18 variables and guards involving up to 14

variables. There are now three di�erent liques. The ab-

sene of lique is expressed here by:

(P2) : loation = later ∧ Cp2 = N ⇒ (C11 6= 0 ∧
C10 = C00 = 0) ∨ (C10 6= 0 ∧ C11 = C00 = 0) ∧ (C00 6=
0 ∧ C10 = C11 = 0)

Need for onvex aeleration. When omputing the tran-

sitive losure of transitions, the size of the automata

omputed beomes too large and exeeds Fast limita-

tion of 224
nodes, ausing the program to rash. Lukily

all transitions are onvex translations, exept t26 whih

does not need to be aelerated sine it does not be-

long to any iruit. Hene the onvex aeleration an

be used, and transitive losures of transitions have all

been omputed.

Fixed number of stations. For a small �xed number of

stations, the reahability set is omputed. For N = 5,
the reahability set is omputed and P2 is heked to be

true. Computation requires 900 seonds and 588 Mb(!)

of memory. The �nal ndd has 5, 684 nodes. Computa-

tion sueeds with N = 10, but fails for N = 15 (the

automata are too large).

6

The resulting minimal ndd is the same than the one previously

omputed, but intermediate omputations are less expensive.

later

round1

Pred1 :

Pred2 :

Pred3 :

d1+d11−dA11−dF11−dA10−dF10−d0−d10−d00+dA00+dF00>0

d1+d10−dA10−dF10−dA11−dF11−d0−d11−d00+dA00+dF00>0

d0+d00−dA00−dF00−d1−d11−d10+dA11+dA10+dF11+dF10>0

t2

t3

t4 t6
t7

t8

t18

t19

t21t22
t23

t25

t27

t26

      dF++, dF00++,Cp1++,Cp2++,C00−−

        d11++,Cp1++,Cp2++
t3: Cp1<N & d10<C10−d1 & CW −2d0 −2d00 −2d11>0/
      d10++,Cp1++,Cp2++     
t4 : Cp1<N & d00<C00−d0 & CW−2d1−2d10−2d11>0/
      d00++,Cp1++,Cp2++

        dF++,Cp1++,Cp2++,C11−−
t7 : Cp1<N & d10<C10 & CW−2d0−2d00−2d11<=0/

        dF++,Cp1++,Cp2++,C10−−
t8 : Cp1<N &d00<C00−d0 & CW−2d1−2d10−2d11<=0/

        dF++,Cp1++,Cp2++,C00−−

t19 : Cp1>=N & Cp2<N & Pred2/

        dF++,dF11++,Cp1++,Cp2++,C11−−
      dF++,dF10++,Cp1++,Cp2++,C10−−

t34

t33

t32

t31
t30

t28

d00=0 & d11=0 & d10=0 & 
dA00=0 & dA11=0 & dA10=0 &
dF00=0 & dF11=0 & dF10=0 &
dF=0 & Cp2=1 & Cp1=d0+d1+1 &
N>=0 & CW=N & C11>=1 &
C00>=1 & C10>=1 & d1<=C10 &
d0<=C00 & C11+C00+C10=CW

t2 : Cp1<N & d11<C11 & CW−2d0−2d00−2d10>0/ 

t6 : Cp1<N & d11<C11−d1 & CW−2d0−2d00−2d10<=0/ 

t18 : Cp1>=N & Cp2<N & Pred1/       d11++,Cp1++,Cp2++,dA11++
      d10++,Cp1++,Cp2++,dA10++
   d00++,Cp1++,Cp2++,dA00++t21 : Cp1>=N & Cp2<N & Pred3/

t22 : Cp1>=N & Cp2<N & !Pred1/  
t23 : Cp1>=N & Cp2<N & !Pred2/ 
t25 : Cp1>=N & Cp2<N & !Pred3/

t26 : Cp2=N /  dF=0,d11=0,d10=0,d00=0,Cp2=0 

t27 : Cp2<N & d11<C11 & C11−C10−C00>0 /        d11++,Cp2++
       d10++,Cp2++
       d00++, Cp2++

t28 : Cp2<N & d10<C10 & C10−C11−C00>0 /
t30 : Cp2<N & d00<C00 & C00−C10−C11>0 /
t31 : Cp2<N & d11<C11 & C11−C10−C00<=0 /

       C11−−,Cp2++,dF++,CF++
t32 : Cp2<N & d10<C10 & C10−C11−C00<=0 /
       C10−−,Cp2++,CF++,dF++

       C00−−,Cp2++,CF++,dF++
t34 : Cp2<N & dF<CF / Cp2++,dF++

t33 : Cp2<N & d00<C00 & C00−C10−C11<=0 / 

Fig. 9: Counter system for the TTP, 2 faults

Arbitrary number of stations. Sine automata enoun-

tered during the omputation are too large, we ompute

an over-approximation of the reahability set by relaxing

some onstraints and removing some variables. We hope

this approximation has a simpler struture and is still

preise enough to onlude. We use the following triks:

Redution of the number of variables, by using straight-

forward invariants like CW = C11 + C10 + C00.

Over-Approximation of the behavior, by removing some

omplex terms in the guards. Moreover some vari-

ables are removed in this proess.

Modular omputation, as desribed for one fault, to

speed up omputation.

The abstration of the system is presented in �g-

ure 10. Fast heks that P2 holds on this system, whih

proves the orretness of the TTP for 2 faults.

9.5 Results

Results are summarized in table 8. Convex aeleration

always performs better than standard aeleration, in

both time and spae.

9.6 Veri�ation with Alv, Lash and TReX

Here we report the tests we arried out to verify the

TTP with the tools Alv, Lash and TReX.

With Alv

7

, the reahability set omputation does not

terminate for one fault and an arbitrary number of sta-

7

The settings are those onsidered in setion 8.
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round1
d00=0 & d11=0 & d10=0 & 
Cp2=1 & N>=0 & C11>=1 & 
C00>=1 & C10>=1 &  
C00+C11+C10=N

later

t2−t18 : Cp2<N & d11<C11 / 
        d11++,Cp2++

t7−t23 : Cp2<N & d10<C10 /
        Cp2++,C10−−

        Cp2++,C00−−

t6−t22 : Cp2<N & d11<C11 / 
        Cp2++,C11−−

t4−t21 : Cp2<N & d00<C00 /
      d00++,Cp2++

t3−t19: Cp2<N & d10<C10 /
      d10++,Cp2++     

t8−t25 : Cp2<N &d00<C00 /

            Compute reachable states R1

         reachable states R1

t34 : Cp2<N & dF<CF / Cp2++,dF++ t27 : Cp2<N & d11<C11 & C11−C10−C00>0 / 
       d11++,Cp2++

t28 : Cp2<N & d10<C10 & C10−C11−C00>0 /
       d10++,Cp2++

t30 : Cp2<N & d00<C00 & C00−C10−C11>0 /
       d00++, Cp2++

t31 : Cp2<N & d11<C11 & C11−C10−C00<=0 /
       C11−−,Cp2++,dF++,CF++

t32 : Cp2<N & d10<C10 & C10−C11−C00<=0 /
       C10−−,Cp2++,dF++,CF++

t33 : Cp2<N & d00<C00 & C00−C10−C11<=0 / 
       C00−−,Cp2++,CF++,dF++

Check Property P2 :
Cp2=N => C11=0&C10=0&C00>0
                || C11=0&C10>0&C00=0
                || C11>0&C10=0&C00=0

Fig. 10: Abstration for the TTP, 2 faults

standard a. onvex a.

faults - stations time mem. time mem. n. of

se. Mb se. Mb nodes

1 - N 1,880 73 1,200 63 27,932

2 - 5 ↑↑↑ (

∗
) ↑↑↑ (

∗
) 892 588 5,684

2 - 10 ↑↑↑ (

∗
) ↑↑↑ (

∗
) 24,365 588 273,427

2 - 15 ↑↑↑ (

∗
) ↑↑↑ (

∗
) ↑↑↑ ↑↑↑ ↑↑↑

2 - N ↑↑↑ (

∗
) ↑↑↑ (

∗
) ↑↑↑ ↑↑↑ ↑↑↑

2 - N 420 200 350 200 11,036

(abstration)

(

∗
) The memory is saturated by aeleration omputation; the

veri�ation proess does not go further.

Table 8. Benhmark for the TTP (Fast)

tions. The veri�ation reported in [22℄ is not fully au-

tomati: Alv is used to hek an intermediate invariant

guessed by the authors on loation round1. This invari-

ant is then used to ompute an over-approximation of the

set of reahable states in loation later. This is su�ient

here to ensure the orretness, but the exat reahability

set is never omputed and the approah needs to guess

the appropriate invariant.

Lash suessfully omputes the reahability set for one

fault and an arbitrary number of stations, sine only loop

aeleration is required. However for two faults, the a-

eleration algorithm saturates the memory and the ver-

i�ation fails.

Finally, the TTP annot be modeled in the (restrited)

ounter systems manipulated by TReX.

10 The CES servie

In this setion, we desribe the veri�ation of the servie

expeted from the Capability Exhange Signaling Proto-

ol (CES). In [58℄ Billington and Liu prove by hand the

struture of the reahability graph. Fast automatially

heks the results from [58℄ desribing the nodes in the

reahability graph.

10.1 Servie desription

The protool aims at one peer informing the other of its

multimedia apabilities. The length of ommuniation

hannels (bu�ers) intervenes here as a parameter.

Figure 11 presents a olored Petri net modeling the

CES servie. This net is derived from [58℄. Colored Petri

nets (CPN) [48℄ are an extension of Petri nets where

tokens are arbitrary typed data values (oloring). Col-

ored tokens onsumed and produed by transitions are

de�ned by terms on the ars. Funtions and types are

expressed in the ML language.

Plaes OutControl and InControl always ontain only

one token having two possible values. Plae forTransfer

ontains a queue with a unique kind of message. Plae

revTransfer ontains a queue with two kinds of messages:

transRes and rejReq. Finally, plae dSymbol uses three

tokens, eah ontaining a list of symbols. The transition

forLOST models the loss of messages.

Remark 7. The length of queue forTransfer is bounded

by l in this system, where l is a parameter of the CPN.

When analyzing the CPN, the value of this parameter

must be �xed. We want to remove this limitation in our

ounter system to enable a parametri veri�ation of the

protool.

Billington and Liu [58℄ study the struture of the reah-

ability graph of the CES servie. In partiular, they

prove that the reahability set ontains exatly 12 on�g-
urations for a queue of length 1, and for eah inrement

of the queue length, 4 new on�gurations are added to

the reahability set. These additional on�gurations are

ompletely haraterized [58, table 2, page 287℄.

Interest. The CES is naturally a queue system. Sine

Fast manipulates ounters and not queues, it was not

the best suited tool at �rst sight. We show how to model

on this spei� ase the queues by ounters, and how to

hek with Fast that the translation is sound. Suh an

approah is further detailed in [18,17℄.

10.2 A ounter system for the CES

The �rst step is to transform the CPN into a ounter

system. Queues are modeled expliitly in the CPN, but
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inControl
states

1‘idleINF
outControl

states

1‘idleINF

TRANSFERcnf

TRANSFERreq

[length(rq)<l]

REJECTindP

REJECTindU TRANSFERresREJECTreq

TRANSFERindREJECTind

revTransfer

response

1‘[]

forTransfer
request

1‘[]

dSymbol1‘dO([])++1‘d1([])
++1‘d2([])

dsymbol

forLOST

color states = with idleINF | awaitingINF;
color req = with transReq;
color request = list req;
color res = with transRes | rejReq;
color response = list res;
color dsym = with d;
color dsymb = list dsym;
color dsymbol = union dO: dsymb + d1: dsymb + d2: dsymb;

var rq: request;     
var rs: response;
var dsO,ds1,ds2: dsymb;
var st: states;

fun f1(dsO,ds1,st) = if dsO=[] orelse (st=awaitingINF andalso length(dsO)=1)   
 then 1‘dO(dsO)++1‘d1(ds1^^[d]) 
    else 1‘dO(tl(dsO))++1‘d1(ds1);
fun f2(dsO,ds2) = if dsO=[] 
    then 1‘dO(dsO)++1‘d2(ds2^^[d]) 
    else 1‘dO(tl(dsO))++1‘d2(ds2);
fun f3(dsO) = if dsO=[] 
    then 1‘dO(dsO) 
    else 1‘dO(tl(dsO));
fun f(dsO,[],[],[])=1‘dO(dsO^^[d])++1‘d1([])++1‘d2([])
  | f(dsO,[],[],d::ds2)=1‘dO(dsO)++1‘d1([])++1‘d2(ds2)
  | f(dsO,[],d::ds1,[])=1‘dO(dsO)++1‘d1(ds1)++1‘d2([])
  | f(dsO,r::rs,[],[])=1‘dO(dsO)++1‘d1([])++1‘d2([])
  | f(_,_,_,_) = empty;

awaitingINF 

idleINF

transReq::rq

 awaitingINF

 idleINF

idleINF

awaitingINF 

awaitingINF idleINF

 awaitingINF
idleINF

 awaitingINF 

idleINF

awaitingINF  awaitingINF

 idleINF

 idleINF

 rejReq::rs

 transRes::rs

rq^^[transReq]

if dsO=[] then rs^^[rejReq] else rs

if dsO=[] then rs^^[transRes]  else rs

rq

rq

rs
rs

rs
rs

rs

if rs=[] then 1‘[] else 1‘tl(rs)

transReq::rq
rq

st

f1(dsO,ds1,st)

1‘dO(dsO)
++1‘d1(ds1)

f2(dsO,ds2)

1‘dO(dsO)
++1‘d2(ds2)

dO(dsO)

f3(dsO)

dO(dsO)

f3(dsO)

1‘dO(dsO)
++1‘d1(ds1)++1‘d2(ds2)

f(dsO,rs,ds1,ds2)

Fig. 11: CPN modeling the CES servie spei�ation, derived from [58℄

must be represented by a set of integer variables in the

ounter system. Sine the queue forTransfer has only

one kind of message, it is straightforwardly replaed by

a ounter stating the number of messages in the queue.

The seond queue revTransfer is more omplex to deal

with, sine it has two kinds of messages transRes and

rejReq. Following [58℄, we make the assumption that the

two kinds of messages never oexist in the queue. Then

the queue is modeled by two ounters, one for eah kind

of message. The validity of this assumption is heked in

setion 10.3.

The ounter system derived from the CPN model is

presented in �gure 12 (only typial parts are inluded).

Variable bu�g represents the maximal size of the queue

forTransfer (it orresponds to parameter l in the CPN).

The system has a single loation marking. Plae dsym-

bol in the CPN always ontains three tokens, whih are

queues ontaining a single type of element. Therefore, in

the ounter system, it is represented by three di�erent

variables d0, d1, d2. Sine some transitions have omplex

�ring modes, due to the funtions on ars and in guards,

they need to be split into di�erent transitions of the

ounter system (e.g. REJECTreq).

10.3 Model orretness

We hek the modeling hypothesis about queues. To

ensure that two kinds of messages never oexist in the

queue forTransfer, we show that all reahable on�gura-

tions satisfy: either revTrans has a null value, or rejTrans

has a null value. This is expressed by the following re-

gion:

Region bad := {(!(revTrans)=0) && (!(rejTrans)=0)};
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model CES {

var outControl, inControl, forTrans, revTrans, rejTrans,

d0, d1, d2, buflg;

states marking;

transition TRANSFERreq := {

from := marking;

to := marking;

guard := outControl=0 && forTrans<buflg;

ation := outControl'=1, forTrans'=forTrans+1;

};

...

transition REJECTreq1 := {

from := marking;

to := marking;

guard := inControl=1 && d0=0;

ation := inControl'=0, rejTrans'=rejTrans+1;

};

transition REJECTreq2 := {

from := marking;

to := marking;

guard := inControl=1 && !d0=0;

ation := inControl'=0, d0'=d0-1;

};

}

Fig. 12: Desription in Fast of the CES servie

Region bad is then interseted with the reahability

set. The resulting region is empty, thus the modeling

hypothesis is orret. Note that no value is needed for

bu�g. This means that the result is valid for any value

of bu�g.

10.4 Veri�ation with Fast

We automatially prove with Fast the haraterization

of nodes in the reahability graph obtained by Liu and

Billington in [58℄. To do so, a region is delared for eah

of the 12 on�gurations of the system when the bu�er

length l is 1 (mark1 to mark12 ). Additional on�gura-

tions are de�ned aording to the formula in [58, table 2,

page 287℄ (mark1n to mark4n). The reahability set is

supposed to be equal to the union of all these regions

(region fullOG). The sript in �gure 13 performs the

automati veri�ation of this result.

The reahability set is omputed with yles of length

2. The result is positive, i.e. the reahability set is as

the expeted. Sine variable bu�g is never set, the prop-

erty is automatially proved for any queue length. Fast

terminates in less than 30 seonds.

10.5 Results

Fast has been used with suess to verify the harater-

ization of on�gurations for a parametri lossy hannel

system. A major issue is the modeling of the queues by

ounters, whih requires some assumptions on the on-

tents of the queue. Fast proves the orretness of the

assumptions, and also the expeted property.

strategy forward {

Transitions t := {TRANSFERreq, TRANSFERnf, REJECTindU,

TRANSFERind, ...};

Region mark1 := {outControl=0 && inControl=0 && forTrans=0 &&

revTrans=0 && rejTrans=0 && d0=0 && d1=0 &&

d2=0 && state=marking};

...

Region mark12 := {outControl=1 && inControl=1 && forTrans=0 &&

revTrans=0 && rejTrans=0 && d0=1 && d1=1 &&

d2=0 && state=marking};

Region marks1n := {forTrans<=buflg && d0=forTrans-1 &&

outControl=1 && inControl=0 && revTrans=0 &&

rejTrans=0 && d1=0 && d2=0 && state=marking};

...

Region marks4n := {forTrans<=buflg && d0=forTrans+1 &&

outControl=0 && inControl=1 && revTrans=0 &&

rejTrans=0 && d1=0 && d2=0 && state=marking};

Region fullOG := mark1 || ... || mark12 ||

marks1n || ... || marks4n;

Region reah := post*(mark1 && {buflg>0}, t, 2);

if (eqSet(fullOG && {buflg>0},reah)) then

print("fullOG OK");

endif

}

Fig. 13: The reahability set

10.6 Veri�ation with Alv and Lash

We report our veri�ation of the CES with Alv and

Lash. The tool Alv (same settings as in setion 8) does

not terminate in less than 20 minutes. The tool Lash

also does not terminate with only loop aeleration.When

speifying yles of length 2 to be aelerated (these are

dedued from the feedbak of Fast omputation), then

Lash terminates quikly. We have not experimented with

TReX on this example.

11 Conlusion

In this paper, we have presented Fast, a tool for hek-

ing safety properties on ounter systems. Fast is an im-

plementation of the �at aeleration framework instan-

tiated to ounter systems. The tool implements state-of-

the-art tehnologies suh as automata-based representa-

tion of Presburger-de�nable sets, aeleration of linear

funtions and automati seletion of interesting iruits

through dediated heuristis and redutions. It follows

a lear design and eah step is justi�ed as rigorously as

possible, onsidering the whole problem is undeidable.

We skethed in the paper all the theoretial founda-

tions of Fast, and desribed the arhiteture of the tool.

We then desribed lengthy experiments arried out, and

we have ompared Fast with other tools having similar

goals. The main points of the tool are a very expres-

sive input model allowing many systems to be expressed

diretly, a powerful engine able to ompute the reaha-

bility set in most ases, the possibility to guide the tool

for omplex examples and a lear design.



20 Sébastien Bardin et al.: FAST: Aeleration from theory to pratie

Many experiments have been suessfully arried out.

Despite the fat that reahability sets of ounter systems

are not omputable, Fast terminates in about 75% of

our experiments. Fast has been the �rst tool to auto-

matially verify the TTP, a omplex fault-tolerant pro-

tool. Fast has also been used to hek a parametri

property of a lossy hannel system, the CES servie.

These performanes are far better than those of simi-

lar tools. Atually, omparison with tools like Alv and

Lash proves that eah mehanism of Fast is of impor-

tane. Comparison with Alv demonstrates learly that

iruit aeleration enhanes greatly the termination of

the reahability set omputation, while omparison with

Lash shows that onsidering iruits of arbitrary length

(not restrited to loops) is of major importane for many

systems. Experiments made with Fast demonstrate that

the �at aeleration framework is sound for the veri�a-

tion of ounter systems.

Perspetives. Fast has proved to be e�ient for ounter

systems with approximately 20 unbounded variables. The

next step is to sale up the tehniques to wider systems.

We are urrently looking towards three diretions: (1)

improve the ndd representation, for example using ahe

systems; (2) improve the iruit seletion with new re-

dutions and dynami disovery; (3) relax the exat om-

putation and mix widening and abstration with aeler-

ation. Another interesting issue is to investigate how to

deide riher properties on ounter systems, for example

liveness. First results have been obtained for LTL [31℄.
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